Masalah SPLTV (Kecepatan kerja)
Tiga tukang cat, Joni, Deni, dan Ari yang biasa bekerja secara bersamaan, mereka dapat mengecat eksterior (bagian luar) sebuah rumah dalam waktu 10 jam kerja. Pengalaman Deni dan Ari pernah bersama-sama mengecat rumah yang serupa dalam waktu 15 jam. Suatu hari ketiga tukang cat ini, bekerja mengecat rumah serupa selama 4 jam kerja. Setelah itu, Ari pergi karena ada suatu keperluan mendadak, Joni dan Deni memerlukan tambahan waktu 8 jam kerja lagi untuk menyelesaikan pengecatan rumah. Tentukan waktu yang dibutuhkan masing-masing tukang cat jika masing-masing bekerja sendirian
PENYELESAIAN:
Kecepatan kerja = banyak pekerjaan / waktu kerja.
$\begin{align*}\frac{1}{j}+\frac{1}{d}+\frac{1}{a} &= \frac{1}{10} ..... (1)\\
\frac{1}{d}+\frac{1}{a} &= \frac{1}{15} .....(2)\end{align*}$
Kurangkan persamaan (1) dan persamaan (2)
$\begin{align*}\frac{1}{j} &= \frac{1}{30}\\
j &= 30 jam \end{align*}$
ketiga tukang cat bekerja selama 4 jam kerja, maka sisa pekerjaan $\frac{10-4}{10}$ = 0,6 bagian yang harus diselesaikan oleh Joni dan Deni selama 8 jam.
$\begin{align*}\frac{1}{j}+\frac{1}{d}&=\frac{0,6}{8}\\
\frac{1}{30}+\frac{1}{d}&=\frac{6}{80}\\
\frac{1}{d}&=\frac{3}{40} - \frac{1}{30}\\
&=\frac{9-4}{120}\\
&=\frac{5}{120}\\
\frac{1}{d}&=\frac{1}{24}\\
d &= 24 jam\end{align*}$
j = 30 dan d = 24 substitusi ke:
$\begin{align*}\frac{1}{d}+\frac{1}{a} &= \frac{1}{15}\\
\frac{1}{24}+\frac{1}{a} &= \frac{1}{15}\\
\frac{1}{a} &= \frac{1}{15}-\frac{1}{24}\\
&= \frac{8-5}{120}\\
&= \frac{3}{120}\\
\frac{1}{a} &= \frac{1}{40}\\
a &= 40 jam \end{align*}$
Jadi, waktu yang dibutuhkan tukang cat jika masing-masing bekerja sendirian yaitu Joni = 30 jam, Deni = 24 jam dan Ari = 40 jam.
PENYELESAIAN:
Kecepatan kerja = banyak pekerjaan / waktu kerja.
$\begin{align*}\frac{1}{j}+\frac{1}{d}+\frac{1}{a} &= \frac{1}{10} ..... (1)\\
\frac{1}{d}+\frac{1}{a} &= \frac{1}{15} .....(2)\end{align*}$
Kurangkan persamaan (1) dan persamaan (2)
$\begin{align*}\frac{1}{j} &= \frac{1}{30}\\
j &= 30 jam \end{align*}$
ketiga tukang cat bekerja selama 4 jam kerja, maka sisa pekerjaan $\frac{10-4}{10}$ = 0,6 bagian yang harus diselesaikan oleh Joni dan Deni selama 8 jam.
$\begin{align*}\frac{1}{j}+\frac{1}{d}&=\frac{0,6}{8}\\
\frac{1}{30}+\frac{1}{d}&=\frac{6}{80}\\
\frac{1}{d}&=\frac{3}{40} - \frac{1}{30}\\
&=\frac{9-4}{120}\\
&=\frac{5}{120}\\
\frac{1}{d}&=\frac{1}{24}\\
d &= 24 jam\end{align*}$
j = 30 dan d = 24 substitusi ke:
$\begin{align*}\frac{1}{d}+\frac{1}{a} &= \frac{1}{15}\\
\frac{1}{24}+\frac{1}{a} &= \frac{1}{15}\\
\frac{1}{a} &= \frac{1}{15}-\frac{1}{24}\\
&= \frac{8-5}{120}\\
&= \frac{3}{120}\\
\frac{1}{a} &= \frac{1}{40}\\
a &= 40 jam \end{align*}$
Jadi, waktu yang dibutuhkan tukang cat jika masing-masing bekerja sendirian yaitu Joni = 30 jam, Deni = 24 jam dan Ari = 40 jam.
Semoga postingan: Masalah SPLTV (Kecepatan kerja) ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Post a Comment for "Masalah SPLTV (Kecepatan kerja)"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.