Skip to content Skip to sidebar Skip to footer

Pembahasan Soal SIMAK UI 2017 Matematika IPA

Seleksi Masuk Universitas Indonesia sering dikenal dengan istilah SIMAK UI. Penyelenggara SIMAK UI hanyalah Universitas Indonesia yang tujuannya untuk merekrut penerimaan mahasiswa baru. Perlu diketahui bahwa materi yang diujikan pada SIMAK UI adalah:
  • Kemampuan Dasar (KD) terdiri atas Bahasa Indonesia, Bahasa Inggris, dan Matematika Dasar.
  • Kemampuan IPA (KA) terdiri atas Biologi, Kimia, Fisika, Matematika IPA dan IPA Terpadu.
  • Kemampuan IPS (KS) terdiri atas Geografi, Ekonomi, Sejarah, dan IPS Terpadu.
Materi apa saja yang harus adik-adik pelajari??? Tentu hal ini tergantung dari prodi apa yang kalian pilih. Untuk jelasnya perhatikan berikut ini:
  • Jika adik-adik memilih prodi IPA maka materi yang harus kalian pelajari adalah KD dan KA.
  • Jika adik-adik memilih prodi IPS maka materi yang harus kalian pelajari adalah KD dan KS.
  • Jika adik-adik memilih prodi IPC (IPA dan IPS) maka kalian tentu harus lebih ekstra mempelajari tiga kemampuan yaitu KD, KA, dan KS.
Baiklah, adik-adik karena ini seleksi tentu PERSIAPAN adalah salah satu penentu kelulusan. Untuk itu silahkan perhatikan Soal dan Pembahasan Matematika IPA SIMAK UI Tahun 2017 berikut ini:

Matematika SIMAK UI 2017 No. 1
Jika lingkaran $x^2+y^2-2ax+b=0$ berjari-jari 2 menyinggung garis $x-y=0$. Maka jumlah kuadrat semua nilai $a$ yang mungkin adalah ….
A. 2    B. 8    C. 12    D. 16    E. 18
Pembahasan:
Lingkaran $x^2 + y^2-2ax+b=0$ berjari-jari 2
$A = -2a, B = 0, C = b$
Titik pusat $\left( \frac{A}{-2}, \frac{B}{-2} \right)$ = (a, 0)
Panjang jari-jari lingkaran sama dengan jarak titik pusat (a, 0) ke garis singgung $x-y = 0$.
$\begin{align} \left| \frac{1.a-1.0}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| &=2 \\ \left| \frac{a}{\sqrt{2}} \right| & =2 \\ \left| a \right| & =2\sqrt{2} \\ a & =\pm 2\sqrt{2} \\ \end{align}$
$a_1=2\sqrt{2}$, atau ${{a}_{2}}=-2\sqrt{2}$
Jumlah kuadrat semua nilai $a$ yang mungkin adalah:
$\begin{align} a_1^2+a_2^2&=\left(2\sqrt{2}\right)^2+\left(-2\sqrt{2}\right)^2 \\ &=8 + 8\\ &=16 \end{align}$
Kunci: D

Matematika SIMAK UI 2017 No. 2
Jika $x_1$ dan $x_2$ adalah akar-akar $2x^2-(2c-1)x-c^3+4=0$, maka nilai maksimum $x_{1}^{2}+x_{2}^{2}$ adalah …
A. $-4\frac{3}{4}$    B. $-3\frac{3}{4}$    C. $-2\frac{3}{4}$    D. $2\frac{3}{4}$    E. $3\frac{3}{4}$
Pembahasan:
$2x^2-(2c-1)x-c^2+4=0$
$A=2$, $B=-2c+1$, $-c^3+4$
$x_1+x_2=\frac{-B}{A} = \frac{2c-1}{2}$
$x_1.x_2=\frac{C}{A} = \frac{4-c^3}{2}$
$\begin{align} x_1^2+x_2^2&=(x_1+x_2)^2-2x_1x_2 \\ &=\left( \frac{2c-1}{2} \right)^2-2.\frac{4-c^3}{2} \\ &=\frac{4c^2-4c+1}{4}-\frac{16-4c^3}{4} \\ &=\frac{4c^3+4c^2-4c-15}{4} \\ x_1^2+x_2^2&=c^3+c^2-c-\frac{15}{4} \end{align}$
$\frac{d}{dc}\left(x_1^2+x_2^2 \right) = 0$
$3c^2+2c-1=0$
$(3c-1)(c+1)=0$
$c=\frac{1}{3}$ atau $c=-1$
Uji turunan kedua:
$\frac{d^2}{dc^2}=6c+2$
$c=\frac{1}{3} \rightarrow \frac{d^2}{dc^2}=6.\frac{1}{3}+2 = 4 > 0$
maka diperoleh nilai minimum untuk $c=\frac{1}{3}$
$c=-1 \rightarrow \frac{d^2}{dc^2}=6.(-1)1+2 = -4 < 0$
maka diperoleh nilai maksimum untuk $c=-1$
$\begin{align} x_1^2+x_2^2 &=c^3+c^2-c-\frac{15}{4} \\ &= (-1)^3+(-1)^2-(-1)-\frac{15}{4} \\ &=-2\frac{3}{4} \end{align}$
Kunci: C

Matematika SIMAK UI 2017 No. 3
Jika $\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$, $\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$, dan $\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$, maka nilai $\frac{1}{23y-25x-18z}$ adalah ….
A. $\frac{11}{12}$    B. $\frac{5}{7}$    C. $\frac{4}{9}$    D. $\frac{2}{7}$    E. $\frac{1}{6}$
Pembahasan:
$\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$ … persamaan (1)
$\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$… persamaan (2)
$\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$… pesamaan (3)
Persamaan (2) dikali dengan 2, kemudian kurangkan dengan persamaan (1):
$\frac{6}{x}-\frac{6}{y}-\frac{2}{z}=4$
$\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$
------------------- (+)
$\frac{8}{x}-\frac{10}{y}=5$ … persamaan (4)
Persamaan (2) dikali dengan 5, kemudian kurangkan dengan persamaan (3)
$\frac{15}{x}-\frac{15}{y}-\frac{5}{z}=10$
$\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$
------------------- (-)
$\frac{11}{x}-\frac{13}{y}=4$ … persamaan (5)
Eliminasi x: persamaan (4) dikali dengan 11, persamaan (4) dikali dengan 8, lalu kurangkan.
$\frac{88}{x}-\frac{110}{y}=55$
$\frac{88}{x}-\frac{104}{y}=32$
-------------------- (-)
$\frac{-6}{y}=23\leftrightarrow y=\frac{-6}{23}$
Substitusi ke persamaan (5)
$\frac{11}{x}-\frac{13}{y}=4\leftrightarrow \frac{11}{x}-\frac{13}{-6/23}=4$
$\leftrightarrow \frac{11}{x}-\frac{13}{-6/23}=4$
$\leftrightarrow x=\frac{66}{275}$
Substitusi ke persamaan (2)
$\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$
$\frac{3}{-66/275}-\frac{3}{-6/23}-\frac{1}{z}=2$
$-\frac{275}{22}+\frac{23}{2}-\frac{1}{z}=2$
$-\frac{275}{22}+\frac{23}{2}-2=\frac{1}{z}$
$-\frac{275}{22}+\frac{253}{22}-\frac{44}{22}=\frac{1}{z}$
$-\frac{66}{22}=\frac{1}{z}$
$z=-\frac{1}{3}$
Maka nilai
$\frac{1}{23y-25x-18z}=\frac{1}{23.\frac{-6}{23}-25.\frac{-66}{275}-18.\frac{-1}{3}}$
$=\frac{1}{-6+6+6}$
$=\frac{1}{6}$
Kunci: E

Matematika SIMAK UI 2017 No. 4
Diketahui suku banyak $f(x+1)$ dibagi $x^2+2x$ mempunyai sisa $2x-5$ dan $f(x-1)$ dibagi $x^2+x$ mempunyai sisa $(x-9)$. Jika sisa pembagian $f(x)$ oleh $x^2+x-2$ adalah $S(x)$, maka $S(4)$ = ….
A. $-6$    B. $-3$    C. 0    D. 3    E. 6
Pembahasan:
Yang dibagi = pembagi x hasil + sisa
$f(x+1)=(x^2+2x).hasil+2x-5$
$f(x+1)=x(x+2).hasil+2x-5$
$x=0$ maka:
$f(0+1)=0(0+2).hasil+2.0-5\to f(1)=-5$
$f(x-1)=(x^2+x).hasil+x-9$
$f(x-1)=x(x+1).hasil+x-9$
$x= -1$, maka:
$f(-1-1)=-1(-1+1).hasil+-1-9 \rightarrow f(-2) = -10$
$f(x)=(x^2+x-2).hasil+S(x)$; misalkan $S(x) = ax + b$
$f(x)=(x+2)(x-1).hasil+ax+b$
$f(1)=a+b=-5$
$f(-2)=-2a+b=-10$
------------------------- (-)
$3a=5$
$a=\frac{5}{3}$
$a+b=-5$
$\frac{5}{3}+b=-5\to b=-\frac{20}{3}$
$S(x)=ax+b$
$S(x)=\frac{5}{3}x-\frac{20}{3}$
$S(4)=\frac{5}{3}.4-\frac{20}{3}=0$
Kunci: C

Matematika SIMAK UI 2017 No. 5
Jika $f(x)=\frac{x+1}{2}$ dan $g(x)=\frac{2x-1}{3}$, maka nilai $x$ yang memenuhi $|f(x)-g(x)| < 1$ adalah …
A. $1 \le x \le 11$
B. $x < 1$ atau $x > 11$
C. $x \le 1$ atau $x \ge 11$
D. $-1 < x < 11$
E. $-11 < x < 1$
Pembahasan:
$\left| \frac{x+1}{2}-\frac{2x-1}{3} \right| < 1$
$\left| \frac{3x+3}{6}-\frac{4x-2}{6} \right| < 1$
$\left| \frac{-x+5}{6} \right| < 1$
$\left| -x+5 \right| < 6$
$-6 < -x+5 < 6$
$ -11 < -x < 1$
$11 > x > -1$
$-1 < x < 11$
Kunci: D


Matematika SIMAK UI 2017 No. 6
Nilai $x$ yang memenuhi $(x-1)+{{(x-1)}^{3}}+{{(x-1)}^{5}}+...=1$ adalah ….
A. $\frac{1+5\sqrt{3}}{2}$
B. $\frac{1+\sqrt{5}}{2}$
C. $\frac{1-5\sqrt{3}}{2}$
D. $\frac{1-3\sqrt{5}}{2}$
E. $\frac{1-\sqrt{5}}{2}$
Pembahasan:
$(x-1)+{{(x-1)}^{3}}+{{(x-1)}^{5}}+...=1$
Merupakan deret geometri tak hingga dengan $a=x-1$ dan $r=(x-1)^2$, dan memperhatikan jumlahnya sama dengan 1, maka $a > 0 \rightarrow x > 1$ maka:
${{S}_{\infty }}=\frac{a}{1-r}$
$1=\frac{x-1}{1-{{(x-1)}^{2}}}$
$1=\frac{x-1}{1-{{x}^{2}}+2x-1}$
$-{{x}^{2}}+2x=x-1$
${{x}^{2}}-x-1$
$x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$
$x=\frac{1+\sqrt{{{(-1)}^{2}}-4.1.(-1)}}{2.1}$
$x=\frac{1+\sqrt{5}}{2}$
Kunci: B

Matematika SIMAK UI 2017 No. 7
Jika $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ dengan $0\le x \le \frac{\pi}{2}$, maka $sin \ 2x$ = …
A. $\frac{4}{5}$    B. $\frac{3}{5}$    C. $\frac{2}{5}$    D. $\frac{1}{5}$    E. 0
Pembahasan:
$sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$
$2\sin \ x.\cos x+2{{\cos }^{2}}x-1$ = $-16\cos x+8\sin x+{{\cos }^{2}}x$
$2\sin \ x.\cos x+16\cos x+{{\cos }^{2}}x-1-8\sin x=0$
$2\cos x(\sin \ x+8)-{{\sin }^{2}}x-8\sin x=0$
$2\cos x(\sin \ x+8)-\sin x(\sin x+8)=0$
$(2\cos x-\sin x)(\sin \ x+8)=0$
$2\cos x-\sin x=0$
$\sin x=2\cos x$
$\frac{\sin x}{\cos x}=2$
$\tan x=\frac{2}{1}=\frac{de}{sa}$ maka $mi=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5}$
$\sin x=\frac{de}{mi}=\frac{2}{\sqrt{5}}$  dan $\cos x=\frac{sa}{mi}=\frac{1}{\sqrt{5}}$
$sin\ 2x=2\sin x.\cos x$
$sin\ 2x=2.\frac{2}{\sqrt{5}}.\frac{1}{\sqrt{5}}=\frac{4}{5}$
Kunci: A

Matematika SIMAK UI 2017 No. 8 
$\lim_{x\to \frac{\pi }{2}}\frac{\sec 2x+2}{\tan 2x}$ = …
A. $-2$    B. $-1$    C. $-\frac{1}{2}$    D. 0    E. 1
Pembahasan:
Misal: $y=x-\frac{\pi }{2}\leftrightarrow x=y+\frac{\pi }{2}$
Jika $x\to \frac{\pi }{2}$ maka $y\to 0$
$\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\sec 2x+2}{\tan 2x}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{\sec 2\left( y+\frac{\pi }{2} \right)+2}{\tan 2\left( y+\frac{\pi }{2} \right)}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\sec 2y+2}{\tan 2y}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\frac{1}{\cos 2y}+2}{\frac{\sin 2y}{\cos 2y}}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-1+2\cos 2y}{\sin 2y}$
Dengan teorema L’Hospital
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-4\sin 2y}{2\cos 2y}$
$=\underset{y\to 0}{\mathop{\lim }}\,-2\tan 2y$
$=-2.\tan (2.0)$
$=0$
Kunci: D

Matematika SIMAK UI 2017 No. 9
$6\int\limits_{0}^{1}{(\cos \pi x+{{x}^{2}}-3x+2)dx}$ = $(a-1)(a-5)$, maka nilai $a$ adalah …
A. $-2$ atau $-3$
B. 0 atau $-6$
C. 2 atau $-2$
D. 0 atau 6
E. 2 atau 3
Pembahasan:
$6\int\limits_{0}^{1}{(\cos \pi x+{{x}^{2}}-3x+2)dx}=(a-1)(a-5)$
$\left. 6\left( \frac{1}{\pi }\sin \pi x+\frac{1}{3}{{x}^{3}}-\frac{3}{2}{{x}^{2}}+2x \right) \right|_{0}^{1}=(a-1)(a-5)$
$6\left( 0+\frac{1}{3}-\frac{3}{2}+2 \right)-0={{a}^{2}}-5a-a+5$
$2-9+12={{a}^{2}}-5a-a+5$
${{a}^{2}}-6a=0$
$a(a-6)=0$
$a=0$ atau $a=6$
Kunci: D

Matematika SIMAK UI 2017 No. 10
Diberikan kubus ABCD.EFGH dengan panjang rusuk $5a$. Sebuah titik P terletak pada rusuk CG sehingga CP : PG = 2 : 3. Bidang PBD membagi kubus menjadi dua bagian dengan perbandingan volume ….
A. 1:14    B. 1:13    C. 1:12    D. 1:11    E. 1:10
Pembahasan:
Perhatikan gambar berikut:
Soal dan Pembahasan SIMAK UI 2017/2018
$V_1$ = Volume P.BCD
$=\frac{1}{3}.\frac{BC.CD}{2}.PC$
$=\frac{1}{3}.\frac{5a.5a}{2}.2a$
$=\frac{25a^3}{3}$
Volume Kubus = $5a.5a.5a = 125a^3$
$V_2$ = Volume EFGH.ABPD
$= Volume \ Kubus - V_1$
$=125a^3-\frac{25a^3}{3}$
$V_2=\frac{350a^3}{3}$
$V_1:V_2=\frac{25a^3}{3}:\frac{350a^3}{3}$
$V_1:V_2=1:14$
Kunci: A


Matematika SIMAK UI 2017 No. 11
Diberikan kubus ABCD.EFGH dengan panjang rusuk 8. Di dalam kubus tersebut terdapat sebuah limas segiempat beraturan P.ABCD dengan tinggi $a$. Jika JIka titik Q terletak pada rusuk FG sehingga QG = FQ dan jarak antara titik Q ke bidang PCD adalah 4, maka nilai $a$ adalah ….
A. 3    B. 4    C. 5    D. 6    E. 7
Pembahasan:

Matematika SIMAK UI 2017 No. 12
Jika $f(x) = \frac{1}{3}x^3-2x^2+3x$ dengan $-1 \le x \le 2$ mempunyai nilai maksimum di $(a, b)$, maka nilai $\int\limits_{a}^{b}{f'(x)dx}$ adalah …
A. $\frac{16}{81}$    B. $\frac{15}{81}$    C. $\frac{12}{81}$    D. $\frac{9}{81}$    E. $\frac{8}{81}$
Pembahasan:
$f(x) = \frac{1}{3}x^3-2x^2+3x$
$f'(x)=0$
$f'(x)={{x}^{2}}-4x+3=0$
$(x-3)(x-1)=0$
$x=3$ atau $x=1$, nilai maksimum pada interval $-1 \le x \le 2$
Uji nilai x = $-1$, 1, dan 2
$f(-1)=\frac{1}{3}{{(-1)}^{3}}-2{{(-1)}^{2}}+3(-1)=-\frac{16}{3}$
$f(1)=\frac{1}{3}{{(1)}^{3}}-{{2.1}^{2}}+3.1=\frac{4}{3}$
$f(2)=\frac{1}{3}{{.2}^{3}}-{{2.2}^{2}}+3.2=\frac{2}{3}$
nilai maksimum di titik $\left( 1,\frac{4}{3} \right)=\left( a,b \right)$
$\int\limits_{a}^{b}{{f}'(x)dx}=\left. f(x) \right|_{a}^{b}$
$=\left. \frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x \right|_{1}^{\frac{4}{3}}$
$=\left[ \frac{1}{3}{{\left( \frac{4}{3} \right)}^{3}}-2{{\left( \frac{4}{3} \right)}^{2}}+3\left( \frac{4}{3} \right) \right]-\frac{4}{3}$
$=\frac{64}{81}-\frac{32}{9}+\frac{12}{3}-\frac{4}{3}$
$=-\frac{8}{81}$
Kunci: Tidak ada opsi yang memenuhi.

Gunakan petunjuk C dalam mengerjakan soal nomor 13 sampai nomor 15

Matematika SIMAK UI 2017 No. 13
Diketahui vector $\overrightarrow{a}=(1,1,p)$, $\overrightarrow{b}=(-2,n,-3)$, $\overrightarrow{c}=(m,4n,4)$, dan $\overrightarrow{d}=(2m,4-p,8)$. Jika $\overrightarrow{a}$ tegak lurus dengan $\overrightarrow{b}$ dan $\overrightarrow{c}$, sejajar dengan $\overrightarrow{d}$, maka ….
(1) $2n-6p=4$
(2) $m$ sembarang bilangan real
(3) $n+p=\frac{2}{25}$
(4) $n=\frac{13}{25}$
Pembahasan:
$\overrightarrow{a}\bot \overrightarrow{b}$ maka:
$\vec{a}.\vec{b}=0$
$(1,1,p).(-2,n-3)=0$
$-2+n-3p=0$
$n-3p=2$ } kali 2
$2n-6p=4$ maka (1) benar
$\overrightarrow{a}\bot \overrightarrow{b}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\vec{b}\bot \overrightarrow{d}$
$\vec{b}.\overrightarrow{d}=0$
$(-2,n,-3)(2m,4-p,8)=0$
$-4m+4n-np-24=0$
$4n-np=4m+24$
$\vec{a}\bot \overrightarrow{c}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\overrightarrow{c}\bot \overrightarrow{d}$
$\overrightarrow{c}.\overrightarrow{d}=0$
$(m,4n,4)(2m,4-p,8)=0$
$2{{m}^{2}}+16n-4np+32=0$
$2{{m}^{2}}+4(4n-np)+32=0$
$2{{m}^{2}}+4(4m+24)+32=0$
${{m}^{2}}+8m+80=0$
Uji diskriminan:
$D={{b}^{2}}-4ac$
$={{8}^{2}}-4.1.80$
$=-256 < 0$
Maka nilai m imaginer. Jadi (2) salah.
Nah yang lain tidak perlu kita cek, maka opsinya adalah B.
Kunci: B

Matematika SIMAK UI 2017 No. 14
Jika $\sin \ 10^o = a$, maka …
(1) $\frac{1}{sin \ 10^o}-4 \ sin \ 70^o = 2$
(2) $\frac{1}{sin \ 10^o}+4 \ sin \ 70^o = 2a$
(3) $\frac{1}{sin \ 10^o}-8 \ sin \ 70^o = 4-\frac{1}{a}$
(4) $\frac{1}{sin \ 10^o}-16 \ sin \ 70^o = 8-\frac{1}{a}$
Pembahasan:

Matematika SIMAK UI 2017 No. 15
Jika $f(x) = sin \ 3x + x^3+4x^2+5x$, maka …
(1) $f'(0).f''(0)=64$
(2) $\frac{f''(0)}{f'(0)}=1$
(3) $\frac{f'''(0)}{f''(0)}=\frac{-21}{8}$
(4) $f'''(0)-f''(0)+f'(0)=15$
Pembahasan:
$f(x) = sin \ 3x + x^3+4x^2+5x$
$f'(x)=3\cos \ 3x+3{{x}^{2}}+8x+5$
$f'(0)=3\cos \ (3.0)+{{3.0}^{2}}+8.0+5=8$
$f''(x)=-9\sin 3x+6x+8$
$f''(x)=-9\sin (3.0)+6.0+8=8$
$f'''(x)=-27\cos 3x+6$
$f'''(x)=-27\cos (3.0)+6=-21$
(1) ${f}'(0).{f}''(0)=8.8=64$ benar
(2) $\frac{f''(0)}{f'(0)}=\frac{8}{8}=1$ benar.
(3) $\frac{f'''(0)}{f''(0)}=\frac{-21}{8}$, benar
(4) ${f}'''(0)-{f}''(0)+{f}'(0)=-21-8+8=-21\ne 15$, salah
Karena (1), (2), dan (3) benar, sedangkan (4) salah maka opsi A.
Kunci: A

Artikel Terkait:
Semoga postingan: Pembahasan Soal SIMAK UI 2017 Matematika IPA ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

6 comments for "Pembahasan Soal SIMAK UI 2017 Matematika IPA"

  1. Terimakasih atas pembahasan soal-soal ini.

    ReplyDelete
    Replies
    1. Sama-sama, semoga bermanfaat. Sukses untuk kamu.

      Delete
  2. Boleh tau download soalnya dimana?

    ReplyDelete
  3. no 8 . 1/0 = ~
    no 14. jwb B

    ReplyDelete
  4. ma'af pembahasan simak ui mtk ipa 2017 no 13, opsi 3 sulit dibuktikan kebenarannya. kalau soal dianggap a tegak lurus b dan c sejajar d, jawaban A.

    ReplyDelete

Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.