Skip to content Skip to sidebar Skip to footer

Pembahasan Soal SIMAK UI 2018 Matematika IPA Kode 416

Berikut ini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Soal ini merupakan salah satu alat tes untuk menyeleksi mahasiswa/i tahun ajaran 2018/2019 yang akan mengecap pendidikan tinggi di universitas ternama di Indonesia yaitu Universitas Indonesia (UI). Universitas Indonesia terletak di Jl. Margonda Raya, Beji, Pondok Cina Kota Depok Jawa Barat. Pembahasan SIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia Catatan Matematika yang sifatnya membangun dan mari diskusi dan belajar bersama melalui kolom komentar di akhir postingan ini.
Soal SIMAK UI 2018 - Matematika IPA No. 1
Diketahui suku banyak $f(x)$ dibagi ${{x}^{2}}+x-2$ bersisa $ax+b$ dan dibagi ${{x}^{2}}-4x+3$ bersisa $2bx+a-1$. Jika $f(-2)=7$, maka ${{a}^{2}}+{{b}^{2}}$ = …
A. 12
B. 10
C. 9
D. 8
E. 5
Penyelesaian: Lihat/Tutup Yang dibagi = Pembagi x Hasil bagi + Sisa
Suku banyak $f(x)$ dibagi $x^2+x-2$ bersisa $ax+b$, maka:
$f(x)$ = ($x^2+x-2$)Hasil + $ax+b$
$f(x)$ = $(x+2)(x-1)$Hasil + $ax+b$
$f(-2)$ = $(-2+2)(-2-1)$Hasil + $-2a+b$
$f(-2)$ = $-2a+b=7$ … persamaan (1)
$f(1)$ = $(1+2)(1-1)$Hasil + $a+b$
$f(1)$ = $a+b$ … persamaan (2)
Suku banyak $f(x)$ dibagi $x^2-4x+3$ bersisa $2bx+a-1$, maka:
$f(x)$ = ($x^2-4x+3$)Hasil + $2bx+a-1$
$f(x)$ = $(x-1)(x-3)$Hasil + $2bx+a-1$
$f(1)$ = $(1-1)(1-3)$Hasil + $2b+a-1$
$f(1)$ = $2b+a-1$ substitusi ke persamaan (2), maka:
$2b+a-1=a+b$
$b=1$
Substitusi ke persamaan (1), maka:
$-2a+b=7\Leftrightarrow -2a+1=7\Leftrightarrow a=-3$
${{a}^{2}}+{{b}^{2}}={{(-3)}^{2}}+{{1}^{2}}=10$
Jawaban: B

Soal SIMAK UI 2018 - Matematika IPA No. 2
Himpunan penyelesaian $16-x^2\le |x+4|$ adalah …
A. {$x\in R:-4\le x\le 4$}
B. {$x\in R:-4\le x\le 3$}
C. {$x\in R:x\le -4$ atau $x\ge 4$}
D. {$x\in R:0\le x\le 3$}
E. {$x\in R:x\le -4$ atau $x\ge 3$}
Penyelesaian: Lihat/Tutup (i) Untuk $x\ge -4$ maka:
$16-x^2\le |x+4|$
$16-x^2\le x+4$
$12-x^2-x\le 0$
$x^2+x-12\ge 0$
$(x+4)(x-3)\ge 0$
$x\le -4$ atau $x\ge 3$
yang memenuhi syarat $x\ge -4$ adalah $x\ge 3$.
(ii) Untuk $x\le 4$, maka:
$16-x^2\le |x+4|$
$16-x^2\le -(x+4)$
$20-x^2+x\le 0$
$x^2-x-20\ge 0$
$(x-5)(x+4)\ge 0$
$x\le -4$ atau $x\ge 5$
yang memenuhi syarat $x\le 4$ adalah $x\le -4$
Dari i) dan (ii) diperoleh:
{$x\in R:x\le -4$ atau $x\ge 3$}
Jawaban: E

Soal SIMAK UI 2018 - Matematika IPA No. 3
Jika ${{x}_{1}}$ atau ${{x}_{2}}$ memenuhi persamaan $2{{\sin }^{2}}x-\cos x=1$, $0\le x\le \pi $, nilai ${{x}_{1}}+{{x}_{2}}$ adalah …
A. $\frac{\pi }{3}$
B. $\frac{2\pi }{3}$
C. $\pi $
D. $\frac{4}{3}\pi $
E. $2\pi $
Penyelesaian: Lihat/Tutup $2{{\sin }^{2}}x-\cos x=1$
$2(1-{{\cos }^{2}}x)-\cos x=1$
$2{{\cos }^{2}}x+\cos x-1=0$
$(2\cos x-1)(\cos x+1)=0$
$\cos x=\frac{1}{2}\Rightarrow {{x}_{1}}={{60}^{o}}$ atau
$\cos x=-1\Leftrightarrow {{x}_{2}}={{180}^{o}}$
${{x}_{1}}+{{x}_{2}}={{60}^{o}}+{{180}^{o}}$
${{x}_{1}}+{{x}_{2}}={{240}^{o}}=\frac{{{240}^{o}}}{{{180}^{o}}}\pi =\frac{4}{3}\pi $
Jawaban: D

Soal SIMAK UI 2018 - Matematika IPA No. 4
Jika $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$, nilai $a+b$ untuk $a$ dan $b$ bilangan bulat positif adalah …
A. -4
B. -2
C. 0
D. 2
E. 4
Penyelesaian: Lihat/Tutup $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$
$\underset{x\to -3}{\mathop{\lim }}\,\frac{3+ax}{3ax(b{{x}^{3}}+27)}=-\frac{1}{{{3}^{5}}}$
Untuk $x=-3$ maka:
$3+ax=0\Leftrightarrow 3-3a=0\Leftrightarrow a=1$
Untuk $x=-3$ maka:
$b{{x}^{3}}+27=0\Leftrightarrow b.{{(-3)}^{3}}+27=0\Leftrightarrow b=1$
$a+b=1+1=2$
Jawaban: E

Soal SIMAK UI 2018 - Matematika IPA No. 5
Jika $f(x)$ fungsi kontinu di interval $[1,30]$ dan $\int\limits_{6}^{30}{f(x)dx}=30$, maka $\int\limits_{1}^{9}{f(3y+3)dy}$ = …
A. 5
B. 10
C. 15
D. 18
E. 27
Penyelesaian: Lihat/Tutup Misal:
$\int\limits_{y=1}^{y=9}{f(3y+3)dy}$
$x=3y+3$ maka $\frac{dx}{dy}=3\Leftrightarrow dy=\frac{1}{3}dx$
$y=1\Rightarrow x=6$
$y=9\Rightarrow x=30$
$\int\limits_{1}^{9}{f(3y+3)dy}=\int\limits_{6}^{30}{f(x).\frac{1}{3}dx}$
$=\frac{1}{3}\int\limits_{6}^{30}{f(x)dx}$
$=\frac{1}{3}.30=10$
Jawaban: B

Soal SIMAK UI 2018 - Matematika IPA No. 6
Pada balok ABCD.EFGH, dengan AB = 6, BC = 3, dan CG = 2, titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika 3EM = EH, FN = 2NG, 3DO = 2DA, dan $\alpha$ adalah bidang irisan balok yang melalui M, N, dan O, perbandingan luas bidang $\alpha$ dengan luas permukaan balok adalah …
A. $\frac{\sqrt{35}}{36}$
B. $\frac{\sqrt{37}}{36}$
C. $\frac{\sqrt{38}}{36}$
D. $\frac{\sqrt{39}}{36}$
E. $\frac{\sqrt{41}}{36}$
Penyelesaian: Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut:
Pembahasan Matematika IPA SIMAK UI 2018
Bidang $\alpha$ adalah bidang MNN’O (berupa persegipanjang)
Perhatikan segitiga MM’N siku-siku di titik M, dengan MM’ = 6 cm, M’N = 1 cm, maka:
$MN=\sqrt{{{6}^{2}}+{{1}^{1}}}=\sqrt{37}$
Luas bidang $\alpha$ adalah:
$=N'N\times MN$
$=2\sqrt{37}$
Luas permukaan balok adalah:
$=2(p.l+p.t+l.t)$
$=2(6.3+6.2+3.2)=72$
$\frac{\alpha }{L.balok}=\frac{2\sqrt{37}}{72}=\frac{\sqrt{37}}{36}$
Jawaban: B

Soal SIMAK UI 2018 - Matematika IPA No. 7
Diberikan kubus ABCD.EFGH. Sebuah titik P terletak pada rusuk CG sehingga CP : PG = 5 : 2. Jika $\alpha $ adalah sudut terbesar antara rusuk CG dan bidang PBD, maka $\sin \alpha $ = …
A. $-\frac{7\sqrt{11}}{33}$
B. $-\frac{7\sqrt{11}}{44}$
C. $\frac{7\sqrt{11}}{33}$
D. $\frac{7\sqrt{11}}{44}$
E. $\frac{7\sqrt{11}}{55}$
Penyelesaian: Lihat/Tutup Karena CP : PG = 5 : 2 untuk mempermudah perhitungan misalkan panjang rusuk kubus 14 cm, maka CP = 10 cm dan PG = 4 cm. Perhatikan gambar berikut ini!
Pembahasan Matematika IPA SIMAK UI 2018
Sudut terbesar antara rusuk CG dan bidang PBD adalah $\alpha $, dengan $\alpha ={{180}^{o}}-\angle CPQ$
$CQ=7\sqrt{2}$, CP = 10, maka:
$PQ=\sqrt{C{{Q}^{2}}+C{{P}^{2}}}$
$PQ=\sqrt{{{(7\sqrt{2})}^{2}}+{{10}^{2}}}$
$PQ=3\sqrt{22}$
$\sin \alpha =\sin ({{180}^{o}}-\angle CPQ)$
$\sin \alpha =\sin \angle CPQ$
$\sin \alpha =\frac{CQ}{PQ}$
$\sin \alpha =\frac{7\sqrt{2}}{3\sqrt{22}}$
$\sin \alpha =\frac{7}{3\sqrt{11}}\times \frac{\sqrt{11}}{\sqrt{11}}=\frac{7\sqrt{11}}{33}$
Jawaban: C

Soal SIMAK UI 2018 - Matematika IPA No. 8
Jika ${{3}^{x}}+{{5}^{y}}=18$, nilai maksimum ${{3}^{x}}{{.5}^{y}}$ adalah …
A. 72
B. 80
C. 81
D. 86
E. 88
Penyelesaian: Lihat/Tutup ${{3}^{x}}+{{5}^{y}}=18$
Misal: ${{3}^{x}}=a$ dan ${{3}^{y}}=b$ , maka
$a+b=18\Leftrightarrow a=18-b$ nilai maksimum $ab=...?$
$L=a.b$
$L=a(18-a)$
$L=18a-{{a}^{2}}$
Maksimum/minimum, maka $L'=0$
$18-2a=0\Leftrightarrow a=9$
$L=18a-{{a}^{2}}\Leftrightarrow L=18.9-{{9}^{2}}=81$
Jawaban: C

Soal SIMAK UI 2018 - Matematika IPA No. 9
Diketahui $sx-y=0$ adalah garis singgung sebuah lingkaran yang titik pusatnya di kuadran ketiga dan berjarak 1 satuan ke sumbu-$x$. Jika lingkaran tersebut menyinggung sumbu-$x$ dan titik pusatnya dilalui garis $x=-2$, nilai $3s$ adalah …
A. $\frac{1}{6}$
B. $\frac{4}{3}$
C. 3
D. 4
E. 6
Penyelesaian: Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut!
Pembahasan Matematika IPA SIMAK UI 2018
Dari gambar diperoleh:
Lingkaran melalui berpusat di titik (-2,-1) dan berjari-jari 1, maka persamaan lingkarannya adalah:
${{(x+2)}^{2}}+{{(y+1)}^{2}}={{1}^{2}}$, $y=sx$
${{(x+2)}^{2}}+{{(sx+1)}^{2}}=1$
$x^2+4x+4+{{s}^{2}}x^2+2sx+1=1$
$({{s}^{2}}+1)x^2+(2s+4)x+4=0$, syarat menyinggung $D=0$,
${{b}^{2}}-4ac=0$
${{(2s+4)}^{2}}-4({{s}^{2}}+1)4=0$
$4{{s}^{2}}+16s+16-16{{s}^{2}}-16=0$
$-12{{s}^{2}}+16s=0$
$-4s(3s-4)=0$
$-4s=0$ atau $3s=4$
Jawaban: D

Soal SIMAK UI 2018 - Matematika IPA No. 10
Jika kurva $y=(a-2)x^2+\sqrt{3}(1-a)x+a-2$ selalu berada di atas sumbu-$x$, bilangan bulat terkecil $a-2$ yang memenuhi adalah …
A. 6
B. 7
C. 8
D. 9
E. 10
Penyelesaian: Lihat/Tutup $y=(a-2)x^2+\sqrt{3}(1-a)x+a-2$ maka:
$A=a-2$, $B=\sqrt{3}(1-a)$, $C=a-2$,
Selalu berada di atas sumbu-X (definit positif), maka:
(1) $A > 0\Leftrightarrow a-2 > 0\Leftrightarrow a>2$
(2) $D < 0$
$B^2-4AC < 0$
${{[\sqrt{3}(1-a)]}^{2}}-4(a-2)(a-2) < 0$
$3(1-2a+{{a}^{2}})-4({{a}^{2}}-4a+4) < 0$
$3-6a+3{{a}^{2}}-4{{a}^{2}}+16a-16 < 0$
$-{{a}^{2}}+10a-13 < 0$
${{a}^{2}}-10a+13 > 0$, dengan rumus abc maka:
$a=\frac{10\pm \sqrt{48}}{2}$
$a=\frac{10\pm 4\sqrt{3}}{2}$
$a=5\pm 2\sqrt{3}$
$a < 5-2\sqrt{3}$ atau $a > 5+2\sqrt{3}$
Dari (1) dan (2) diperoleh batas nilai $a$ adalah:
$a > 5+2\sqrt{3}\Leftrightarrow a > 5+\sqrt{12}$
$a-2 > 5+\sqrt{12}-2$, karena diminta bilangan bulat terkecil, maka:
$a-2=5+\sqrt{16}-2=7$
Jawaban: B

Soal SIMAK UI 2018 - Matematika IPA No. 11
Jika $a+b-c=2$, ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$, dan $ab=\frac{3}{2}{{c}^{2}}$, nilai $c$ adalah …
A. 0
B. 1
C. 2
D. 3
E. 6
Penyelesaian: Lihat/Tutup $a+b-c=2$
$a+b=2+c$
${{(a+b)}^{2}}={{(2+c)}^{2}}$
${{a}^{2}}+{{b}^{2}}+2ab={{c}^{2}}+4c+4$
${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$
-----------------------------------(-)
$2ab+4{{c}^{2}}={{c}^{2}}+4c+2$
$3{{c}^{2}}-4c+2ab-2=0$, diketahui $ab=\frac{3}{2}{{c}^{2}}$
$3{{c}^{2}}-4c+2.\frac{3}{2}{{c}^{2}}-2=0$
$6{{c}^{2}}-4c-2=0$
$3{{c}^{2}}-2c-1=0$
$(3c+1)(c-1)=0$
$c=-\frac{1}{3}$ atau $c=1$
Jawaban: B

Soal SIMAK UI 2018 - Matematika IPA No. 12
Jika ${{S}_{n}}$ adalah jumlah sampai suku ke-n dari barisan geometri, ${{S}_{1}}+{{S}_{6}}=1024$ dan ${{S}_{3}}\times {{S}_{4}}=1023$, maka $\frac{{{S}_{11}}}{{{S}_{8}}}$ = …
A. 3
B. 16
C. 32
D. 64
E. 254
Penyelesaian: Lihat/Tutup Soal Keliru

Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15.
Petunjuk C yaitu pilihlah:
A. Jika (1), (2), (3) benar.
B. Jika (1) dan (3) benar.
C. Jika (2) dan (4) benar.
D. Jika hanya (4) yang benar.
E. Jika semuanya benar.
Soal SIMAK UI 2018 - Matematika IPA No. 13
Jika vektor $\vec{u}=(2,-1,2)$ dan $\vec{v}=(4,10,-8)$, maka …
(1) $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$ bila $k=\frac{17}{18}$
(2) sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul.
(3) $||pro{{y}_{{\vec{u}}}}\vec{v}||=6$
(4) Jarak antara $\vec{u}$ dan $\vec{v}$ sama dengan $||\vec{u}+\vec{v}||$
Penyelesaian: Lihat/Tutup Pernyataan (1)
$\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$, maka:
$(\vec{u}+k\vec{v}).\vec{u}=0$
$\left( \begin{matrix} 2+4k \\ -1+10k \\ 2-8k \\ \end{matrix} \right).\left( \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right)=0$
$4+4k+1-10k+4-16k=0$
$-22k=-9\Leftrightarrow k=\frac{9}{22}$,
Pernyataan (1) SALAH
Pernyataan (2)
$\cos (u,v)=\frac{u.v}{|u||v|}$
$\cos (u,v)=\frac{\left( \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right).\left( \begin{matrix} 4 \\ 10 \\ -8 \\ \end{matrix} \right)}{\sqrt{4+1+4}.\sqrt{16+100+64}}$
$\cos (u,v)=\frac{8-10-16}{3.6\sqrt{5}}$
$\cos (u,v)=\frac{-18}{18\sqrt{5}}$, karena nilainya negatif maka sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. Pernyataan (2) BENAR.
Berdasarkan petunjuk C, tanpa mengecek pernyataan (4) maka opsi yang memenuhi adalah C.
Jawaban: C

Soal SIMAK UI 2018 - Matematika IPA No. 14
Jika $y=\frac{1}{3}{{x}^{3}}-ax+b$, $a > 0$, dan $a,b\in R$, maka …
(1) nilai minimum lokal $y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$
(2) nilai maksimum lokal $y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$
(3) $y$ stasioner saat $x={{a}^{\frac{1}{2}}}$
(4) naik pada interval $\left[ -\infty ,-{{a}^{\frac{1}{2}}} \right]$
Penyelesaian: Lihat/Tutup $y=\frac{1}{3}{{x}^{3}}-ax+b$
$\frac{dy}{dx}=x^2-a=0$, karena $a > 0$ maka:
$(x+\sqrt{a})(x-\sqrt{a})=0$
$x=-\sqrt{a}$ atau $x=\sqrt{a}$,
Pembahasan Matematika IPA SIMAK UI 2018
Dari gambar garis bilangan, maka: pernyataan (3) dan (4) BENAR.
$y=\frac{1}{3}{{x}^{3}}-ax+b$
$x=-\sqrt{a}\Rightarrow y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ (nilai maksimum lokal), pernyataan (1) BENAR.
$x=\sqrt{a}\Rightarrow y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ (nilai minimum lokal), pernyataan (2) BENAR.
Jawaban: E

Soal SIMAK UI 2018 - Matematika IPA No. 15
Jika $\alpha =-\frac{\pi }{12}$, maka …
(1) ${{\sin }^{4}}\alpha +{{\cos }^{4}}\alpha =\frac{6}{8}$
(2) ${{\sin }^{6}}\alpha +{{\cos }^{6}}\alpha =\frac{12}{16}$
(3) ${{\cos }^{4}}\alpha =\frac{1}{2}-\frac{1}{4}\sqrt{3}$
(4) ${{\sin }^{4}}\alpha =\frac{7}{16}-\frac{1}{4}\sqrt{3}$
Penyelesaian: Lihat/Tutup $\alpha =-\frac{\pi }{12}=-{{15}^{o}}$
$\sin {{15}^{o}}=\sin ({{45}^{o}}-{{30}^{o}})$
$\sin {{15}^{o}}=\sin {{45}^{o}}\cos {{30}^{o}}-\cos {{45}^{o}}\sin {{30}^{o}}$
$\sin {{15}^{o}}=\frac{1}{2}\sqrt{2}.\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{2}.\frac{1}{2}$
$\sin {{15}^{o}}=\frac{\sqrt{6}-\sqrt{2}}{4}$
${{\sin }^{2}}{{15}^{o}}={{\left( \frac{\sqrt{6}-\sqrt{2}}{4} \right)}^{2}}$
${{\sin }^{2}}{{15}^{o}}=\frac{2-\sqrt{3}}{4}$
${{\sin }^{4}}{{15}^{o}}={{\left( \frac{2-\sqrt{3}}{4} \right)}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan (4) BENAR.
Dengan cara yang sama:
$\cos {{15}^{o}}=\frac{\sqrt{6}+\sqrt{2}}{4}$
${{\cos }^{2}}{{15}^{o}}=\frac{2+\sqrt{3}}{4}$
${{\cos }^{4}}{{15}^{o}}={{\left( \frac{2+\sqrt{3}}{4} \right)}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan (3) SALAH.
Dengan logika, berdasarkan petunjuk C maka kita sudah dapat menentukan opsi yang memenuhi adalah D.
Jawaban: D

Semoga postingan: Pembahasan Soal SIMAK UI 2018 Matematika IPA Kode 416 ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

5 comments for "Pembahasan Soal SIMAK UI 2018 Matematika IPA Kode 416"

  1. No 10 kok dr akar 12 jadi akar 16 ya ?

    ReplyDelete
    Replies
    1. Pada pembahasan sudah dijelaskan. Pada soal diminta bilangan bulat terkecil. Nah $\sqrt{12}$ bukan bilangan bulat, maka bilangan bulat terkecil yang lebih besar dari $\sqrt{12}$ adalah $\sqrt{16}$.

      Delete
    2. kalo bilangan bulat terkecil kenapa enggak pake yang akar 9 yang lebih kecil dari akar 12 dan akar 16

      Delete
    3. Pertanyaannya? Bilangan bulat terkecil yang lebih dari (>)

      Delete

Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.