Skip to content Skip to sidebar Skip to footer

Soal Perbandingan Trigonometri Sudut Berelasi dan Pembahasan

Berikut ini adalah Bank Soal Perbandingan Trigonometri Sudut Berelasi dan Pembahasannya. Silahkan dimanfaatkan sebaik mungkin.
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara klik "Lihat/Tutup".

Soal No. 1
Nilai $\sin 50^\circ $ = …
(A) $\sin 310^\circ $
(B) $\sin 230^\circ $
(C) $\cos 110^\circ $
(D) $\cos 320^\circ $
(E) $\cos 210^\circ $
Penyelesaian: Lihat/Tutup Kita bahas per opsi aja ya. Biar makin mantap:
Opsi A:
$\sin 310^\circ =\sin (360^\circ -50^\circ )=-\sin 50^\circ $
Opsi B:
$\sin 230^\circ =\sin (180^\circ +50^\circ )=-\sin 50^\circ $
Opsi C:
$\cos 110^\circ =\cos (90^\circ +20^\circ )=-\sin 20^\circ $
Opsi D:
$\cos 320^\circ =\cos (270^\circ +50^\circ )=\sin 50^\circ $
Opsi E:
$\cos 210^\circ =\cos (270^\circ -60^\circ )=-\sin 60^\circ $
Jadi, opsi yang sesuai adalah opsi D.
Jawaban: D

Soal No. 2
Jika diketahui $\cos x=\frac{\sqrt{5}}{5}$ dengan $x$ sudut lancip, maka nilai dari $\cot \left( \frac{\pi }{2}+x \right)$ = …
(A) $-3$
(B) $-2$
(C) $-4$
(D) $-5$
(E) $-6$
Penyelesaian: Lihat/Tutup $\cos x=\frac{\sqrt{5}}{5}=\frac{sa}{mi}$
$\begin{align} de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{{{5}^{2}}-{{(\sqrt{5})}^{2}}} \\ &= \sqrt{25-5} \\ &= \sqrt{20} \\ de &= 2\sqrt{5} \end{align}$
$\begin{align} \cot \left( \frac{\pi }{2}+x \right) &= -\tan x \\ &= -\frac{de}{sa} \\ &= -\frac{2\sqrt{5}}{\sqrt{5}} \\ \cot \left( \frac{\pi }{2}+x \right) &= -2 \end{align}$
Jawaban: B

Soal No. 3
Jika $\sin x=\frac{1}{5}\sqrt{5}$, maka $\cos x-5\cos \left( \frac{\pi }{2}+x \right)+2\sin (\pi -x)$ = …
(A) $-\frac{1}{5}-\frac{1}{5}\sqrt{5}$
(B) $-\sqrt{5}$
(C) $\frac{1}{5}\sqrt{5}$
(D) $\frac{3}{5}\sqrt{5}$
(E) $\frac{9}{5}\sqrt{5}$
Penyelesaian: Lihat/Tutup $\begin{align} \sin x &= \frac{1}{5}\sqrt{5} \\ \frac{de}{mi} &= \frac{\sqrt{5}}{5} \end{align}$
$\begin{align} sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{5}^{2}}-{{(\sqrt{5})}^{2}}} \\ &= \sqrt{25-5} \\ &= \sqrt{20} \\ sa &= 2\sqrt{5} \end{align}$
$\cos x=\frac{sa}{mi}=\frac{2\sqrt{5}}{5}$
$\cos x-5\cos \left( \frac{\pi }{2}+x \right)+2\sin (\pi -x)$
= $\cos x-5\left( -\sin x \right)+2\sin x$
= $\frac{2\sqrt{5}}{5}+5.\frac{\sqrt{5}}{5}+2.\frac{\sqrt{5}}{5}$
= $\frac{9\sqrt{5}}{5}$
Jawaban: E

Soal No. 4
Jika $\alpha $ di kuadran II dan $\tan \alpha =-\frac{2}{3}$, nilai dari $\frac{\sin (90^\circ -\alpha )-\cos (180^\circ -\alpha )}{\tan (270^\circ +\alpha )+\cot (360^\circ -\alpha )}$ = …
(A) $-\frac{2}{13}\sqrt{13}$
(B) $\frac{2}{13}\sqrt{13}$
(C) $\sqrt{13}$
(D) $2\sqrt{13}$
(E) $3\sqrt{13}$
Penyelesaian: Lihat/Tutup $\tan \alpha =-\frac{2}{3}=\frac{de}{sa}$
$\begin{align} mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{{{2}^{2}}+{{3}^{2}}} \\ mi &= \sqrt{13} \end{align}$
$\alpha $ di kuadran II maka $\sin \alpha $ bernilai positif.
$\sin \alpha =\frac{de}{mi}=\frac{2}{\sqrt{13}}$
$\frac{\sin (90^\circ -\alpha )-\cos (180^\circ -\alpha )}{\tan (270^\circ +\alpha )+\cot (360^\circ -\alpha )}$
= $\frac{\cos \alpha +\cos \alpha }{-\cot \alpha -\cot \alpha }$
= $\frac{2\cos \alpha }{-2\cot \alpha }$
= $\frac{-\cos \alpha }{\cos \alpha /\sin \alpha }$
= $-\sin \alpha $
= $-\frac{2}{\sqrt{13}}\times \frac{\sqrt{13}}{\sqrt{13}}$
= $-\frac{2}{13}\sqrt{13}$
Jawaban: A

Soal No. 5
$\sec 225^\circ $ = ….
(A) $-\sqrt{3}$
(B) $-\sqrt{2}$
(C) $-1$
(D) $-\frac{1}{2}\sqrt{3}$
(E) $-\frac{1}{2}\sqrt{2}$
Penyelesaian: Lihat/Tutup $\begin{align} \sec 225^\circ &= \sec (180^\circ +45^\circ ) \\ &= -\sec 45^\circ \\ &= -\frac{1}{\cos 45^\circ } \\ &= -\frac{1}{\frac{1}{\sqrt{2}}} \\ \sec 225^\circ &= -\sqrt{2} \end{align}$
Jawaban: B

Soal No. 6
${{\cos }^{2}}30^\circ -{{\sin }^{2}}135^\circ +8\sin 45^\circ .\cos 135^\circ $ = ….
(A) $-4\frac{1}{4}$
(B) $-3\frac{3}{4}$
(C) $4\frac{1}{4}$
(D) 4
(E) $3\frac{3}{4}$
Penyelesaian: Lihat/Tutup ${{\cos }^{2}}30^\circ -{{\sin }^{2}}135^\circ +8\sin 45^\circ .\cos 135^\circ $
= ${{\cos }^{2}}30^\circ$ -${{\sin }^{2}}(180^\circ -45^\circ )$+$8\sin 45^\circ \cos (180^\circ -45^\circ )$
= ${{\cos }^{2}}30^\circ$ -${{\sin }^{2}}45^\circ$ +$8\sin 45^\circ .(-\cos 45^\circ )$
= ${{\left( \frac{1}{2}\sqrt{3} \right)}^{2}}-{{\left( \frac{1}{2}\sqrt{2} \right)}^{2}}+8.\frac{1}{2}\sqrt{2}\left( -\frac{1}{2}\sqrt{2} \right)$
= $\frac{3}{4}-\frac{2}{4}-\frac{16}{4}$
= $-\frac{15}{4}$
= $-3\frac{3}{4}$
Jawaban: B

Soal No. 7
Nilai dari: $5\sec 540^\circ -4\cos 630^\circ +\sin 360^\circ +3\cot 450^\circ $ adalah …
(A) $-5$
(B) 1
(C) 1,5
(D) 4
(E) 9
Penyelesaian: Lihat/Tutup $5\sec 540^\circ$ -$4\cos 630^\circ$ +$\sin 360^\circ$ +$3\cot 450^\circ $
= $5\sec (360^\circ$ +$180^\circ )$-$4\cos (360^\circ +270^\circ )$+$\sin 360^\circ$ +$3\cot (360^\circ +90^\circ )$
= $5\sec 180^\circ$ -$4\cos 270^\circ$ +$\sin 360^\circ$ +$3\cot 90^\circ $
= $5\sec 180^\circ$ -$4\cos 270^\circ$ +$\sin 360^\circ$ +$3\cot 90^\circ $
= $5\sec (180^\circ +0^\circ )$-$4\cos (270^\circ +0^\circ )$+$\sin (360^\circ +0^\circ )$+$3\cot (90^\circ +0^\circ )$
= $-5\sec 0^\circ$ +$4\sin 0^\circ$ +$\sin 0^\circ$ -$3\tan 0^\circ $
= $-5.1+4.0+0-3.0$
= $-5$
Jawaban: A

Soal No. 8
Jika $\sin 5^\circ =p$ maka $\cos 265^\circ $ adalah …
(A) $2p$
(B) $p_{}^{}$
(C) $\frac{1}{2}p$
(D) $-p$
(E) $-2p$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 265^\circ &= \cos (270^\circ -5^\circ ) \\ &= -\sin 5^\circ \\ \cos 265^\circ &= -p \end{align}$
Jawaban: D

Soal No. 9
Nilai dari $\frac{\sin 45^\circ .\sin 25^\circ }{\sin 30^\circ .\cos 65^\circ }$ = ….
(A) 1
(B) $\frac{1}{2}\sqrt{2}$
(C) $\sqrt{2}$
(D) $\frac{1}{3}\sqrt{6}$
(E) $\sqrt{6}$
Penyelesaian: Lihat/Tutup $\begin{align} \frac{\sin 45^\circ .\sin 25^\circ }{\sin 30^\circ .\cos 65^\circ } &= \frac{\sin 45^\circ .\sin 25^\circ }{\sin 30^\circ .\cos (90^\circ -25^\circ )} \\ &= \frac{\sin 45^\circ .\sin 25^\circ }{\sin 30^\circ .\sin 25^\circ } \\ &= \frac{\sin 45^\circ }{\sin 30^\circ } \\ &= \frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}} \\ \frac{\sin 45^\circ .\sin 25^\circ }{\sin 30^\circ .\cos 65^\circ } &= \sqrt{2}
\end{align}$
Jawaban: C

Soal No. 10
Dalam segitiga ABC sembarang, nilai $\sin \frac{1}{2}(A+B)$ = ….
(A) $\sin \frac{1}{2}C$
(B) $\sin C$
(C) $\cos \frac{1}{2}C$
(D) $\cos C$
(E) $\cos 2C$
Penyelesaian: Lihat/Tutup $\begin{align} A+B+C &= 180^\circ \\ A+B &= 180^\circ -C \\ \frac{1}{2}(A+B) &= \frac{1}{2}(180^\circ -C) \\ \frac{1}{2}(A+B) &= 90^\circ -\frac{1}{2}C \\ \sin \frac{1}{2}(A+B) &= \sin \left( 90^\circ -\frac{1}{2}C \right) \\ \sin \frac{1}{2}(A+B) &= \cos \frac{1}{2}C \end{align}$
Jawaban: C

Soal No. 11
Jika $\sin 35^\circ =p$, maka $\cos 55^\circ $ = ….
(A) $p$
(B) $1-p$
(C) ${{p}^{2}}$
(D) $1-{{p}^{-1}}$
(E) $\frac{1}{p}$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 55^\circ &= \cos (90^\circ -35^\circ ) \\ &= \sin 35^\circ \\ \cos 55^\circ &= p \end{align}$
Jawaban: A

Soal No. 12
Jika $\cos 10^\circ =m$ maka $\sin 100^\circ $ = ….
(A) $m$
(B) $-m$
(C) $m^2$
(D) $-m^2$
(E) $\sqrt{m}$
Penyelesaian: Lihat/Tutup $\begin{align} \sin 100^\circ &= \sin (90^\circ +10^\circ ) \\ &= \cos 10^\circ \\ \sin 100^\circ &= m \end{align}$
Jawaban: A

Soal No. 13
Jika $\sin 35^\circ =k$ maka $\cos 125^\circ $ = ….
(A) $k$
(B) $-k$
(C) $k^2$
(D) $-k^2$
(E) $\frac{1}{2}p$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 125^\circ &= \cos (90+35) \\ &= -\sin 35 \\ \cos 125^\circ &= -k \end{align}$
Jawaban: B

Soal No. 14
$\sin (90^\circ +A)+\cos (180^\circ -A)+\tan (90^\circ +A)$ = …
(A) $2\cos A-\cot A$
(B) $\cot A-2\cos A$
(C) $2\sin A+\cot A$
(D) $\cot A$
(E) $-\cot A$
Penyelesaian: Lihat/Tutup $\sin (90^\circ +A)+\cos (180^\circ -A)+\tan (90^\circ +A)$
= $\cos A+(-\cos A)+(-\cot A)$
= $-\cot A$
Jawaban: E

Soal No. 15
$\frac{-\sin 45^\circ .\sin 15^\circ }{\cos 135^\circ .\cos 105^\circ }$ = ….
(A) $-2$
(B) $-1$
(C) 0
(D) 1
(E) 2
Penyelesaian: Lihat/Tutup $\begin{align} \frac{-\sin 45^\circ .\sin 15^\circ }{\cos 135^\circ .\cos 105^\circ } &= \frac{-\sin 45^\circ .\sin 15^\circ }{\cos (180^\circ -45^\circ ).\cos (90^\circ +15^\circ )} \\ &= \frac{-\sin 45^\circ .\sin 15^\circ }{-\cos 45^\circ .(-\sin 15^\circ )} \\ &= \frac{-\sin 45^\circ .\sin 15^\circ }{-\cos 45^\circ .(-\sin 15^\circ )} \\ &= -\tan 45^\circ \\ \frac{-\sin 45^\circ .\sin 15^\circ }{\cos 135^\circ .\cos 105^\circ } &= -1 \end{align}$
Jawaban: B

Soal No. 16
$\left( \sin 20^\circ -\cos 110^\circ \right)\left( \sin 20^\circ +\cos 110^\circ \right)$ = ….
(A) $-2$
(B) $-1$
(C) 0
(D) 1
(E) 2
Penyelesaian: Lihat/Tutup $\cos 110^\circ =\cos (90^\circ +20^\circ )=-\sin 20^\circ $
$\left( \sin 20^\circ -\cos 110^\circ \right)\left( \sin 20^\circ +\cos 110^\circ \right)$
= $\left( \sin 20^\circ +\sin 20^\circ \right)\left( \sin 20^\circ -\sin 20^\circ \right)$
= $(2\sin 20^\circ ).0$
= 0
Jawaban: C

Soal No. 17
Jika $\sin 48,59^\circ =0,75$ maka $\cos 138,59^\circ $ = …
(A) 0,75
(B) 0,25
(C) 0,15
(D) $-075$
(E) $-0,25$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 138,59^\circ &= \cos (90^\circ +48,59^\circ ) \\ &= -\sin 48,59^\circ \\ \cos 138,59^\circ &= -0,75 \end{align}$
Jawaban: D

Soal No. 18
$\sin 230^\circ $ = ….
(A) $\sin 50^\circ $
(B) $\cos 50^\circ $
(C) $-\sin 50^\circ $
(D) $-\cos 50^\circ $
(E) $\tan 50^\circ $
Penyelesaian: Lihat/Tutup $\sin 230^\circ =\sin (180^\circ +50^\circ )=-\sin 50^\circ $
Jawaban: C

Soal No. 19
$\cos 205^\circ $ = ….
(A) $\sin 25^\circ $
(B) $\cos 25^\circ $
(C) $-\sin 25^\circ $
(D) $-\cos 25^\circ $
(E) $\tan 25^\circ $
Penyelesaian: Lihat/Tutup $\cos 205^\circ =\cos (180^\circ +25^\circ )=-\cos 25^\circ $
Jawaban: D

Soal No. 20
$\sin 255^\circ $ = ….
(A) $\sin 75^\circ $
(B) $\sin 65^\circ $
(C) $-\sin 75^\circ $
(D) $-\sin 65^\circ $
(E) $\sin 55^\circ $
Penyelesaian: Lihat/Tutup $\sin 255^\circ =\sin (180^\circ +75^\circ )=-\sin 75^\circ $
Jawaban: C

Soal No. 21
$\cos 265^\circ $ = …
(A) $\cos 85^\circ $
(B) $\cos 75^\circ $
(C) $\cos 65^\circ $
(D) $-\cos 85^\circ $
(E) $-\cos 75^\circ $
Penyelesaian: Lihat/Tutup $\cos 265^\circ =\cos (180^\circ +85^\circ )=-\cos 85^\circ $
Jawaban: D

Soal No. 22
$\tan 190^\circ $ = ….
(A) $\tan 10^\circ $
(B) $\cot 10^\circ $
(C) $-\tan 10^\circ $
(D) $-\cot 10^\circ $
(E) $\tan 20^\circ $
Penyelesaian: Lihat/Tutup $\tan 190^\circ =\tan (180^\circ +10^\circ )=\tan 10^\circ $
Jawaban: A

Soal No. 23
Jika $\cos 20^\circ =m$ maka $\sin 250^\circ $ = ….
(A) $m$
(B) $-m$
(C) $m^2$
(D) $-m^2$
(E) $\frac{1}{m}$
Penyelesaian: Lihat/Tutup $\begin{align} \sin 250^\circ &= \sin (270^\circ -20^\circ ) \\ &= -\cos 20^\circ \\ \sin 250^\circ &= -m \end{align}$
Jawaban: B

Soal No. 24
Jika $\cos 256^\circ =k$ maka $\sin 14^\circ $ = ….
(A) $k$
(B) $-k$
(C) $k^2$
(D) $-k^2$
(E) $\sqrt{k}$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 256^\circ &= k \\ \cos (270^\circ -14^\circ ) &= k \\ -\sin 14^\circ &= k \\ \sin 14^\circ &= -k \end{align}$
Jawaban: B

Soal No. 25
Jika $\tan 27^\circ =0,51$ maka $\cot 243^\circ $ = ….
(A) 0,61
(B) 0,51
(C) 0,49
(D) $-0,49$
(E) $-0,51$
Penyelesaian: Lihat/Tutup $\begin{align} \cot 243^\circ &= \cot (270^\circ -27^\circ ) \\ &= \tan 27^\circ \\ \cot 243^\circ &= 0,51 \end{align}$
Jawaban: B

Soal No. 26
$\sin 210^\circ $ = …
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}\sqrt{3}$
(D) $-\frac{1}{2}\sqrt{3}$
(E) 1
Penyelesaian: Lihat/Tutup $\begin{align} \sin 210^\circ &= \sin (180^\circ +30^\circ ) \\ &= -\sin 30^\circ \\ \sin 210^\circ &= -\frac{1}{2} \end{align}$
Jawaban: B

Soal No. 27
$\cos 240^\circ $ = ….
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}\sqrt{3}$
(D) $-\frac{1}{2}\sqrt{3}$
(E) $-1$
Penyelesaian: Lihat/Tutup $\begin{align} \cos 240^\circ &= \cos (180^\circ +60^\circ ) \\ &= -\cos 60^\circ \\ \cos 240^\circ &= -\frac{1}{2} \end{align}$
Jawaban: B

Soal No. 28
$\tan 225^\circ $ = ….
(A) 1
(B) $-1$
(C) $\sqrt{3}$
(D) $-\sqrt{3}$
(E) $\frac{1}{2}\sqrt{2}$
Penyelesaian: Lihat/Tutup $\begin{align} \tan 225^\circ &= \tan (180^\circ +45^\circ ) \\ &= \tan 45^\circ \\ \tan 225^\circ &= 1 \end{align}$
Jawaban: A

Soal No. 29
$\sin (180^\circ +x)-\cot (90^\circ +x)-\tan (180^\circ +x)$ = ….
(A) $\sin x$
(B) $-\sin x$
(C) $\sin x-2\tan x$
(D) $-\sin x-2\tan x$
(E) 0
Penyelesaian: Lihat/Tutup $\sin (180^\circ +x)-\cot (90^\circ +x)-\tan (180^\circ +x)$
= $-\sin x-(-\tan x)-\tan x$
= $-\sin x$
Jawaban: B

Soal No. 30
$\sin (270^\circ -A)-\cos (180^\circ -A)+\cot (270^\circ -A)$ = …
(A) $-2\cos A-\tan A$
(B) $-\cos A+\tan A$
(C) $2\cos A+\tan A$
(D) $\tan A$
(E) $-\tan A$
Penyelesaian: Lihat/Tutup $\sin (270^\circ -A)-\cos (180^\circ -A)+\cot (270^\circ -A)$
= $-\cos A-(-\cos A)+\tan A$
= $\tan A$
Jawaban: D

Soal No. 31
$\sin x=0,1$ maka $\sin \left( x+\frac{1}{2}\pi \right)+\cos (\pi +x)$ = ….
(A) $-0,2$
(B) $-0,1$
(C) 0
(D) 0,2
(E) $-\frac{3}{5}\sqrt{11}$
Penyelesaian: Lihat/Tutup $\begin{align} \sin x &= 0,1 \\ \frac{de}{mi} &= \frac{1}{10} \end{align}$
$\begin{align} sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{10}^{2}}-{{1}^{2}}} \\ &= \sqrt{99} \\ sa &= 3\sqrt{11} \end{align}$
$\begin{align} \sin \left( x+\frac{1}{2}\pi \right)+\cos (\pi +x) &= -\cos x-\cos x \\ &= -2\cos x \\ &= -2.\frac{sa}{mi} \\ &= -2.\frac{3\sqrt{11}}{10} \\ \sin \left( x+\frac{1}{2}\pi \right)+\cos (\pi +x) &= -\frac{3\sqrt{11}}{5} \end{align}$
Jawaban: E

Soal No. 32
Jika $\tan 24^\circ =k$ maka $\cos 294^\circ $ = ….
(A) $\frac{k}{\sqrt{1-k^2}}$
(B) $\frac{k}{\sqrt{k^2+1}}$
(C) $\sqrt{1+k^2}$
(D) $\sqrt{1-k^2}$
(E) 1
Penyelesaian: Lihat/Tutup $\begin{align} \tan 24^\circ &= k \\ \frac{de}{sa} &= \frac{k}{1} \end{align}$
$mi=\sqrt{de^2+sa^2}=\sqrt{k^2+1}$
$\begin{align} \cos 294^\circ &= \cos (270^\circ +24^\circ ) \\ &= \sin 24^\circ \\ &= \frac{de}{mi} \\ \cos 294^\circ &= \frac{k}{\sqrt{k^2+1}} \end{align}$
Jawaban: B

Soal No. 33
$\cos (270^\circ +A)+\cos (270^\circ -A)+\tan (270^\circ +A)$ = …
(A) $-2\sin A-\cot A$
(B) $-2\sin A+\cot A$
(C) $2\sin A+\cot A$
(D) $\cot A$
(E) $-\cot A$
Penyelesaian: Lihat/Tutup $\cos (270^\circ +A)+\cos (270^\circ -A)+\tan (270^\circ +A)$
= $\sin A+(-\sin A)+(-\cot A)$
= $-\cot A$
Jawaban: E

Soal No. 34
$\sin 280^\circ $ = ….
(A) $\sin 80^\circ $
(B) $-\sin 80^\circ $
(C) $\cos 80^\circ $
(D) $-\cos 80^\circ $
(E) $-\cos 280^\circ $
Penyelesaian: Lihat/Tutup $\sin 280^\circ =\sin (360^\circ -80^\circ )=-\sin 80^\circ $
Jawaban: B

Soal No. 35
Jika $\sin (360^\circ -A)=p$ maka $\sin A$ = ….
(A) $1-p$
(B) $-p$
(C) $p$
(D) $1+p$
(E) $1+p^2$
Penyelesaian: Lihat/Tutup $\begin{align} \sin (360^\circ -A) &= p \\ -\sin A &= p \\ \sin A &= -p \end{align}$
Jawaban: B

Semoga postingan: Soal Perbandingan Trigonometri Sudut Berelasi dan Pembahasan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

Post a Comment for "Soal Perbandingan Trigonometri Sudut Berelasi dan Pembahasan"