Skip to content Skip to sidebar Skip to footer

Cara Menentukan Sistem Pertidaksamaan Linear Jika Daerah Himpunan Penyelesaian Diketahui



Menentukan Sistem Pertidaksamaan Linear Jika Daerah Himpunan Penyelesaian Diketahui



Contoh 1.

Cara Menentukan Sistem Pertidaksamaan Linear
Sistem pertidaksamaan untuk daerah himpunan penyelesaian pada gambar di atas adalah ....
Penyelesaian:
1. Garis g melalui titik (0,3) dan (4, 0) maka persamaan garis g adalah:
$ax+by=ab$
$3x+4y=12$
Daerah penyelesaian di sebelah kiri garis g maka pertidaksamaannya adalah:
$3x+4y\le 12$
2. Garis h melalui titik (0,6) dan (2,0) maka persamaan garis h adalah:
$ax+by=ab$
$6x+2y=12$
Daerah penyelesaian di sebelah kiri garis h maka pertidaksamaannya adalah:
$6x+2y\le 12$ atau $3x+y\le 6$.
3. Daerah penyelesaian di sebelah kanan sumbu Y, maka: $x\ge 0$.
4. Daerah penyelesaian di sebelah atas sumbu X, maka: $y\ge 0$.
Jadi, sistem pertidaksamaan daerah penyelesaian pada gambar adalah:
$3x+4y\le 12$
$3x+y\le 6$
$x\ge 0$
$y\ge 0$

Contoh 2.

Cara Menentukan Sistem Pertidaksamaan Linear
Sistem pertidaksamaan untuk daerah himpunan penyelesaian pada gambar di atas adalah ....
Penyelesaian:
1. Garis g melalui titik (0, 2) dan (5, 0) maka persamaan garis g adalah:
$ax+by=ab$
$2x+5y=10$
Daerah penyelesaian di sebelah kiri garis g maka pertidaksamaannya adalah:
$2x+5y\le 10$
2. Garis h melalui titik (0,4) dan (2,0) maka persamaan garis h adalah:
$ax+by=ab$
$4x+2y=8$
Daerah penyelesaian di sebelah kanan garis h maka pertidaksamaannya adalah:
$4x+2y\ge 8$ atau $2x+y\ge 4$
3. Daerah penyelesaian di sebelah kanan sumbu Y, maka: $x\ge 0$.
4. Daerah penyelesaian di sebelah atas sumbu X, maka $y\ge 0$
Jadi, sistem pertidaksamaan linear daerah penyelesaian pada gambar adalah:
$2x+5y\le 10$
$2x+y\ge 4$
$x\ge 0$
$y\ge 0$


Contoh 3.

Cara Menentukan Sistem Pertidaksamaan Linear
Sistem pertidaksamaan untuk daerah himpunan penyelesaian pada gambar di atas adalah ...
Penyelesaian:
1. Garis g melalui titik (0,3) dan (5,0) maka persamaan garis g adalah:
$ax+by=ab$
$3x+5y=15$
Daerah penyelesaian di sebelah kanan garis g maka pertidaksamaannya adalah:
$3x+5y\ge 15$
2. Garis h melalui titik (0,5) dan (4,0) maka persamaan garis h adalah:
$ax+by=ab$
$5x+4y=20$
Daerah penyelesaian di sebelah kanan garis g maka pertidaksamaannya adalah:
$5x+4y\ge 20$
3. Daerah penyelesaian di sebelah kanan sumbu Y, maka $x\ge 0$.
4. Daerah penyelesaian di sebelah atas sumbu X, maka $y\ge 0$.
Jadi, sistem pertidaksamaan daerah penyelesaian pada gambar adalah:
$3x+5y\ge 15$
$5x+4y\ge 20$
$x\ge 0$
$y\ge 0$

Contoh 4.

Cara Menentukan Sistem Pertidaksamaan Linear
Sistem pertidaksamaan untuk daerah himpunan penyelesaian pada gambar di atas adalah:
Penyelesaian:
1. Garis g melalui titik (0,1) dan (3,0) maka persamaan garis g adalah:
$ax+by=ab$
$x+3y=3$
Daerah penyelesaian di sebelah kanan garis g maka pertidaksamaannya adalah:
$x+3y\ge 3$
2. Garis h melalui titik (0,3) dan (3,0) maka persamaan garis h adalah:
$ax+by=ab$
$3x+3y=9$
Daerah penyelesaian di sebelah kiri garis h maka pertidaksamaannya adalah:
$3x+3y\le 9$ atau $x+y\le 3$
3. Garis k melalui titik (0,1) dan (-1,0) maka persamaan garis k adalah:
$ax+by=ab$
$x-y=-1$
Daerah penyelesaian di sebelah kanan garis k maka pertidaksamaannya adalah:
$x-y\ge -1$
Jadi, sistem pertidaksamaan daerah penyelesaian pada gambar adalah:
$x+3y\ge 3$
$x+y\le 3$
$x-y\ge -1$

Contoh 5.

Cara Menentukan Sistem Pertidaksamaan Linear
Sistem pertidaksamaan untuk daerah himpunan penyelesaian pada gambar di atas adalah ...
Penyelesaian:
1. Garis g melalui titik (0,2) dan (3,3) maka persamaan garis g adalah:
$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$
$\frac{y-2}{3-2}=\frac{x-0}{3-0}$
$\frac{y-2}{1}=\frac{x}{3}$
$x=3(y-2)$
$x=3y-6$
$x-3y+6=0$
Daerah penyelesaian di sebelah kanan garis g, maka pertidaksamaannya adalah:
$x-3y+6\ge 0$.
2. Garis h melalui titik (3,3) dan (4,0) maka persamaan garis h adalah:
$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$
$\frac{y-3}{0-3}=\frac{x-3}{4-3}$
$\frac{y-3}{-3}=\frac{x-3}{1}$
$y-3=-3(x-3)$
$y-3=-3x+9$
$3x+y-12=0$
Daerah penyelesaian di sebelah kiri garis h, maka pertidaksamaannya adalah:
$3x+y-12\le 0$
3. Daerah penyelesaian di sebelah kanan sumbu Y, maka $x\ge 0$.
4. Daerah penyelesaian di sebelah kiri sumbu X, maka $y\ge 0$.


LATIHAN

Soal No. 1
Soal Cara Menentukan Sistem Pertidaksamaan Linear
Tentukan sistem pertidaksamaan linear dari daerah himpunan penyelesaian pada gambar di atas.
Soal No. 2
Soal Cara Menentukan Sistem Pertidaksamaan Linear
Tentukan sistem pertidaksamaan linear dari daerah himpunan penyelesaian pada gambar di atas.
Semoga postingan: Cara Menentukan Sistem Pertidaksamaan Linear Jika Daerah Himpunan Penyelesaian Diketahui ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

Post a Comment for "Cara Menentukan Sistem Pertidaksamaan Linear Jika Daerah Himpunan Penyelesaian Diketahui"