Kaidah Pencacahan 4. Kombinasi (Definisi dan Contoh Soal)
A. Definisi Kombinasi
Kombinasi adalah suatu pilihan dari unsur-unsur yang ada tanpa memperhatikan urutannya (AB = BA).
B. Kombinasi k Unsur dari n Unsur
Banyak kombinasi k unsur dari n unsur dinyatakan:
$_n{C}_k = \frac{n!}{k!(n-k)!}$; $k\le n$
Penulisan kombinasi:
$_n{C}_k = C(n,k) = C_k^n = \left( \begin{matrix} n \\ k \\ \end{matrix} \right)$
$_n{C}_k = \frac{n!}{k!(n-k)!}$; $k\le n$
Penulisan kombinasi:
$_n{C}_k = C(n,k) = C_k^n = \left( \begin{matrix} n \\ k \\ \end{matrix} \right)$
Contoh 1.
Hitunglah nilai dari $_{10}C_3$.
Penyelesaian: Lihat/Tutup
$\begin{align} _{10}C_3 &= \frac{10!}{3!(10-3)!} \\ &= \frac{10!}{3!.7!} \\ &= \frac{10.\overset{3}{\mathop{\cancel{9}}}\,.\overset{4}{\mathop{\cancel{8}}}\,.\cancel{7!}}{\cancel{3}.\cancel{2}.1.\cancel{7!}} \\ &= 10.3.4 \\ _{10}C_3 &=120 \end{align}$Contoh 2.
Tentukan nilai n yang memenuhi persamaan $C(n,4)=C(n,3)$.
Penyelesaian: Lihat/Tutup
$\begin{align} C(n,4) &=C(n,3) \\ \frac{\overset{1}{\mathop{\cancel{n!}}}\,}{4!.(n-4)!} &= \frac{\overset{1}{\mathop{\cancel{n!}}}\,}{3!.(n-3)!} \\ \frac{1}{4.\cancel{3!}.\cancel{(n-4)!}} &= \frac{1}{\cancel{3!}.(n-3)\cancel{(n-4)!}} \\ n-3 &= 4 \\ n &= 4+3 \\ n &= 7 \end{align}$Contoh 3.
Jumlah siswa di suatu kelas adalah 30 anak. Akan dipilih 3 orang sebagai pengurus kelas. Ada berapa cara memilih kepengurusan kelas tersebut?
Penyelesaian: Lihat/Tutup
Misalkan, 3 orang terpilih sebagai pengurusa adalah A, B, dan C maka kita cek ternyata ABC = ACB. Jadi, banyak cara pemilihan kepengurusan tersebut adalah kombinasi 3 orang dari 30 orang.$\begin{align} _{30}C_3 &=\frac{30!}{3!(30-3)!} \\ &= \frac{30!}{3!.27!} \\ &= \frac{\overset{5}{\mathop{\cancel{30}}}\,.29.28.\cancel{27!}}{\cancel{3}.\cancel{2}.1.\cancel{27!}} \\ &= 5.29.28 \\ _{30}C_3 &=4060 \end{align}$
Banyak cara pemilihan adalah 4060 cara.
Contoh 4.
Suatu pertemuan dihadiri oleh 10 orang. Pada saat bertemu, mereka saling berjabat tangan satu sama lain. Ada berapa jabat tangan yang terjadi?
Penyelesaian: Lihat/Tutup
Misalkan, 2 orang yang berjabat tangan A dan B, ternyata AB = BA.Jadi, banyak jabat tangan yang terjadi adalah kombinasi 2 orang dari 10 orang.
$\begin{align} _{10}C_2 &= \frac{10!}{2!.(10-2)!} \\ &= \frac{10!}{2!.8!} \\ &= \frac{\overset{5}{\mathop{\cancel{10}}}\,.9.\cancel{8!}}{\cancel{2}.1.\cancel{8!}} \\ &= 5.9 \\ _{10}C_2 &=45 \end{align}$
Jadi, banyak jabat tangan yang terjadi adalah 45 jabat tangan.
Contoh 5.
Seorang siswa diminta mengerjakan 8 soal dari 10 soal, tetapi soal nomor 3 dan 6 harus dikerjakan. Banyak pilihan yang dapat diambil oleh siswa itu adalah ...
Penyelesaian: Lihat/Tutup
Semula siswa akan memilih 8 soal dari 10 soal.Karena soal nomor 3 dan 6 harus dikerjakan, artinya 2 soal telah terpilih. Sehingga siswa hanya memilih 6 soal lagi dari 8 soal.
$\begin{align} _8C_6 &= \frac{8!}{6!.(8-6)!} \\ &= \frac{8!}{6!.2!} \\ &= \frac{\overset{4}{\mathop{\cancel{8}}}\,.7.\cancel{6!}}{\cancel{6!}.\cancel{2}.1} \\ &= 4.7 \\ _{8}C_6 &= 28 \end{align}$
Jadi, banyak pilihan soal yang dapat diambil adalah 28 pilihan.
Contoh 6.
Dalam sebuah kotak terdapat 8 bola merah dan 5 bola kuning. Tentukan banyak cara mengambil 6 bola merah dan 2 bola kuning sekaligus dari kotak tersebut.
Penyelesaian: Lihat/Tutup
Mengambil 6 bola merah dari 8 bola merah dan 2 kuning dari 5 kuning.Banyak cara pengambilan bola adalah:
$\begin{align} _8C_6 \times _5C_2 &= \frac{8!}{6!.(8-6)!}\times \frac{5!}{2!.(5-2)!} \\ &= \frac{8!}{6!.2!}\times \frac{5!}{2!.3!} \\ &= \frac{\overset{4}{\mathop{\cancel{8}}}\,.7.\cancel{6!}}{\cancel{6!}.\cancel{2}.1}\times \frac{5.\overset{2}{\mathop{\cancel{4}}}\,.\cancel{3!}}{\cancel{2}.1.\cancel{3!}} \\ &= 4.7.5.2 \\ _8C_6 \times _5C_2 &=280 \end{align}$
Jadi, banyak cara pengambilan bola adalah 280 cara.
Contoh 7.
Dari 6 orang pria dan 4 wanita akan dipilih 5 orang pengurus. Berapa banyak cara memilih paling sedikit 3 wanita.
Penyelesaian: Lihat/Tutup
Kemungkinan-kemungkinannya:*) Terpilih 3 wanita dan 2 pria
*) Terpilih 4 wanita dan 1 pria
Dalam hal ini berlaku juga aturan penjumlahan.
Banyak cara memilih:
= $_4C_3 \times _6C_2 + _4C_4 \times _6C_1$
= $\frac{4!}{3!(4-3)!}.\frac{6!}{2!(6-2)!}+\frac{4!}{4!(4-4)!}.\frac{6!}{1!(6-1)!}$
= $\frac{4!}{3!.1!}.\frac{6!}{2!.4!}+\frac{4!}{4!.0!}.\frac{6!}{1!.5!}$
= $\frac{4.\cancel{3!}}{\cancel{3!}.1}.\frac{\overset{3}{\mathop{\cancel{6}}}\,.5.\cancel{4!}}{\cancel{2}.1.\cancel{4!}}+\frac{\cancel{4!}}{\cancel{4!}.1}.\frac{6.\cancel{5!}}{1.\cancel{5!}}$
= 4.3.5 + 6
= 66 cara
C. Soal Latihan
- Hitunglah nilai dari $\frac{_5C_3}{_{10}C_3}$.
- Pada suatu perlombaan diperoleh 15 orang finalis, tim juri akan memilih 3 pemenang. Ada berapa cara juri memilih 3 orang pemenang tersebut?
- Suatu kotak berisi 6 kelereng merah dan 5 kelereng putih. Ada berapa cara untuk mengambil 5 kelereng sekaligus yang terdiri dari 3 kelereng merah dan 2 kelereng putih?
- Seorang peternak memiliki 6 bahan baku makanan ternak. Jika setiap makanan ternak yang akan dibuat oleh peternak tersebut paling sedikit menggunakan campuran dari 4 bahan makanan ternak, ada berapa macam makanan ternak yang dapat dibuat oleh peternak tersebut?
- Dari 10 orang siswa yang terdiri dari 7 orang putra dan 3 orang putri akan dibentuk tim yang beranggotakan 5 orang. Jika disyaratkan anggota tim tersebut paling banyak 2 orang putri, tentukan banyaknya tim yang dapat dibentuk!
Semoga postingan: Kaidah Pencacahan 4. Kombinasi (Definisi dan Contoh Soal) ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Post a Comment for "Kaidah Pencacahan 4. Kombinasi (Definisi dan Contoh Soal)"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.