Pembahasan Soal JPU SMB Telkom University 2019 | Matematika Kode Soal 11
SMB Telkom University Tahun 2019 No. 1
Premis 1: Jika barisan $\{a_n\}$ konvergen maka barisan $\{b_n\}$ konvergen.Premis 2: Barisan $\{b_n\}$ tidak konvergen.
Kesimpulan dari premis 1 dan premis 2 adalah ….
(A) $\{a_n\}$ konvergen
(B) $\{a_n\}$ tidak konvergen
(C) $\{a_n\}$ bernilai positif
(D) Tidak ada kesimpulan
(E) $\{a_n\}$ tidak divergen
SMB Telkom University Tahun 2019 No. 2
Jika $3^{x+1}=\frac{243}{3}$ maka nilai $5^x$ = ….(A) 5
(B) 25
(C) 125
(D) 625
(E) 3.125
SMB Telkom University Tahun 2019 No. 3
Jika diketahui $5^x.10=50$, maka nilai dari $x^2+2x+1$ = …(A) 5
(B) 4
(C) 1
(D) 25
(E) 16
SMB Telkom University Tahun 2019 No. 4
Agar vektor $\vec{a}=2\vec{i}+\vec{j}-\vec{k}$ dan $\vec{b}=(c-1)\vec{i}+c^2\vec{j}+\vec{k}$ saling tegak lurus maka $c^2+1$ = ….(A) 2
(B) 1
(C) 4
(D) 3
(E) 5
SMB Telkom University Tahun 2019 No. 5
Kebun Pak Udin luasnya dua kali lipat kebun Pak Asep. Kebun Pak Otong luasnya tiga kali lipat kebun Pak Udin. Jika selisih luas kebun Pak Otong dengan Pak Udin adalah 100 Ha, maka total luas kebun Pak Asep + luas kebun Pak Udin + luas kebun Pak Otong adalah ...(A) 600 Ha
(B) 150 Ha
(C) 60 Ha
(D) 300 Ha
(E) 75 Ha
SMB Telkom University Tahun 2019 No. 6
Seorang siswa diharuskan menyelesaikan 10 dari 20 soal yang tersedia. Jika soal nomor 5, 12, 17, dan 19 harus dikerjakan. Banyaknya cara mengerjakan soal yang dapat dipilih oleh siswa adalah ...(A) $_{16}C_6$
(B) $_{20}C_{10}$
(C) $_{16}P_6$
(D) $_{20}P_{10}$
(E) $_{16}C_4$
SMB Telkom University Tahun 2019 No. 7
Jika $f(x)=2-x$ dan $g(x)=f^{-1}(x)$ maka nilai $g'(2)$ = ...(A) -1
(B) 1
(C) 2
(D) 0
(E) -2
SMB Telkom University Tahun 2019 No. 8
Himpunan penyelesaian dari persamaan eksponen: ${{2}^{2x}}-{{10.2}^{x}}+16=0$ adalah ...(A) {1,2}
(B) {1,3}
(C) {2,8}
(D) {1,2,3}
(E) {}
SMB Telkom University Tahun 2019 No. 9
Nilai integral tentu $\int\limits_{-1}^{1}{\frac{(4x^2+6)^2}{x^2}dx}$ = ....(A) 104/3
(B) 124/3
(C) 134/3
(D) 114/3
(E) 94/3
SMB Telkom University Tahun 2019 No. 10
Seorang pedagang eceran Pertamini menjual premium dan pertalite dengan harga masing-masing Rp. 7.000 dan Rp. 8.000 per liter. Keuntungan dari penjualan premium dan pertalite masing-masing Rp. 100 dan Rp. 150 per liter. Jika kapasitas penyimpanan adalah 100 liter untuk premium dan 150 liter untuk pertalite, dan modal yang dimiliki adalah Rp. 1.100.000, maka maksimal keuntungan yang mungkin dicapai adalah ...(A) 21.625
(B) 20.625
(C) 23.625
(D) 22.625
(E) 19.625
SMB Telkom University Tahun 2019 No. 11
Diketahui $f(a)=(2a^2+3xa)^2$, $f'(0)$ = ...(A) 0
(B) 2x
(C) 6x
(D) 6a
(E) 8x
SMB Telkom University Tahun 2019 No. 12
Diketahui vektor $\vec{a}=\left[ \begin{matrix} a_1 \\ a_2 \\ \end{matrix} \right]$; $\vec{b}=\left[ \begin{matrix} b_1 \\ b_2 \\ \end{matrix} \right]$; $\vec{c}=\left[ \begin{matrix} 2 \\ 5 \\ \end{matrix} \right]$. Jika $\vec{a}+\vec{b}=\vec{c}$ dan $4\vec{a}-\vec{b}=\vec{c}$, maka $\frac{a_1-b_1}{a_2-b_2}$ = ...(A) 4/5
(B) 3/5
(C) 2/5
(D) 1/5
(E) 6/5
SMB Telkom University Tahun 2019 No. 13
Koordinat titik ekstrim dari $f(x)=\frac{2x^2}{x^2-4}$ adalah ...(A) (0,2)
(B) (0,0), (0,8) dan (-2,-8)
(C) (-2,-8)
(D) (0,0)
(E) (2,8) dan (-2,-8)
SMB Telkom University Tahun 2019 No. 14
Hasil penjumlahan dua buah bilangan positif adalah 28, maka hasil terbesar dari perkalian kedua bilangan itu adalah ...(A) 144
(B) 196
(C) 206
(D) 225
(E) 360
SMB Telkom University Tahun 2019 No. 15
Himpunan penyelesaian $2x+5 \ge \frac{3}{x}$ adalah ...(A) $\left( -\infty ,-3 \right)\cup \left( 0,\frac{1}{2} \right)$
(B) $\left[ -3,0 \right]\cup \left( \frac{1}{2},\infty \right)$
(C) $\left[ -3,0 \right)\cup \left( \frac{1}{2},\infty \right)$
(D) $\left[ -3,0 \right)\cup \left[ \frac{1}{2},\infty \right)$
(E) $\left( -\infty ,-3 \right)\cup \left( 0,\frac{1}{2} \right)$
SMB Telkom University Tahun 2019 No. 16
Nilai $\underset{x\to 2}{\mathop{\lim }}\,\frac{x^2+4}{(x-2)^2}$ = ...(A) $\infty $
(B) 0
(C) 2
(D) 1
(E) $-\infty $
SMB Telkom University Tahun 2019 No. 17
Diketahui fungsi suku banyak $P(x)=a_0+a_1x+a_2x^2+a_3x^3$ memenuhi sifat $P(1)=0$; $P(-1)=0$, $P(2)=0$ dan $P(-2)=-4$, maka nilai $a_0a_1a_2a_3$ = ...(A) $\frac{5}{81}$
(B) $\frac{4}{81}$
(C) $-\frac{5}{81}$
(D) $\frac{1}{81}$
(E) $\frac{8}{81}$
SMB Telkom University Tahun 2019 No. 18
Nilai $b^2+2$ agar $||\vec{i}-\vec{j}+b\vec{k}|| = 2$ adalah ...(A) 6
(B) 5
(C) 4
(D) 7
(E) 8
SMB Telkom University Tahun 2019 No. 19
Diketahui matriks $B=\left[ \begin{matrix} 5 & 6 \\ 7 & 8 \\ \end{matrix} \right]$, $C=\left[ \begin{matrix} 9 & 10 \\ 11 & 12 \\ \end{matrix} \right]$, nilai $k$ yang memenuhi $(C-B)^{18} = k\left[ \begin{matrix} 4^{17} & 4^{17} \\ 4^{17} & 4^{17} \\ \end{matrix} \right]$ adalah ...(A) $2^{14}$
(B) $2^{15}$
(C) $2^{16}$
(D) $2^{17}$
(E) $2^{18}$
SMB Telkom University Tahun 2019 No. 20
Luas maksimum persegi panjang yang dapat dibangun di bawah parabola $y=1-x^2$ dan di atas sumbu $x$ adalah ...(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{3\sqrt{3}}$
(C) $\frac{2}{3\sqrt{3}}$
(D) $\frac{4}{3\sqrt{3}}$
(E) $\frac{4}{3}$
Semoga postingan: Pembahasan Soal JPU SMB Telkom University 2019 | Matematika Kode Soal 11 ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Terima kasih, sangat membantu.
ReplyDeletekak,kalo soal tipe mtk gini di tpa jalur beasiswa apakah ada?
ReplyDelete