Pembahasan Soal SMA Taruna Nusantara Seleksi Akademik Tahun 2018 - Latihan Soal 2025

Selamat datang di Website Catatan Matematika, website belajar matematika secara online dan mandiri. Berikut ini Catatan Matematika berbagi Pembahasan Soal Matematika Seleksi Masuk SMA Taruna Nusantara Tahun 2018 Bidang Studi Matematika. Pembahasan Soal Seleksi SMA Taruna Nusantara ini dapat dijadikan sebagai bahan belajar bagi adik-adik yang ingin menjadi salah satu siswa di SMA Taruna Nusantara Magelang secara khusus dan SMA Favorit dan SMA Unggulan lainnya secara umum.
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik Lihat/Tutup atau klik untuk menonton video pembahasan.

Seleksi SMA Taruna Nusantara 2018 No. 1
Diketahui fungsi f(x)=2x211x+p yang mempunyai nilai minimum 18 . Nilai 2p adalah ...
A. –30
B. –15
C. 15
D. 30
Penyelesaian: Lihat/Tutup f(x)=2x211x+p adalah fungsi kuadrat, diperoleh a=2, b=11 dan c=p.
ymax/min=(b24ac)4a18=((11)24.2.p)4.218=1218p81=1218p8p=1202p=30
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 2
Perhatikan relasi berikut:
i ) {(1, a), (2, a), (3, a), (4, a)}
ii) {(2, b), (3, c), (4, d), (2, e)}
iii) {(3, 6), (4, 6), (5, 10), (3, 12)}
iv) {(1, 5), (3, 7), (5, 9), (3, 11)}
Relasi yang merupakan pemetaan adalah ...
A. i
B. ii
C. iii
D. iv
Penyelesaian: Lihat/Tutup Perhatikan bahwa pada (x,y) maka x = domain, dan y = range.
TIPS:
Syarat pemetaan pada himpunan pasangan terurut, anggota domain berbeda semua.
Yang memenuhi adalah i)
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 3
Himpunan penyelesaian dari (13)x+7>32x1 dengan x bilangan bulat adalah ...
A. {x|x>2,xbilanganbulat}
B. {x|x>1,xbilanganbulat}
C. {x|x<1,xbilanganbulat}
D. {x|x<2,xbilanganbulat}
Penyelesaian: Lihat/Tutup (13)x+7>32x1(31)x+7>32x13x7>32x1x7>2x1x2x>1+73x>6x<2
HP = {x|x<2,xbilanganbulat}
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 4
Andre membeli 1 kg pear dan 2 kg anggur dengan harga Rp. 94.000,-. Setiawan membeli 3 kg anggur dan 2 kg pear dengan harga Rp. 167.000,-. Jika harga 1 kg pear dinyatakan dengan x dan harga 1 kg anggur dinyatakan dengan y, sistem persamaan linear dua variabel yang berkaitan dengan pernyataan di atas adalah ...
A. x + 2y = 94.000 dan 3x + 2y = 167.000
B. 2x + y = 94.000 dan 3x + 2y = 167.000
C. 2x + y = 94.000 dan 2x + 3y = 167.000
D. x + 2y = 94.000 dan 2x + 3y = 167.000
Penyelesaian: Lihat/Tutup x = harga 1 kg pear
y = harga 1 kg anggur
Andre membeli 1 kg pear dan 2 kg anggur dengan harga Rp. 94.000,-
Ditulis: x + 2y = 94.000
Setiawan membeli 3 kg anggur dan 2 kg pear dengan harga Rp. 167.000,-
Ditulis: 3y + 2x = 167.000 atau 2x + 3y = 167.000
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 5
Diketahui f(2x+3)=2x5 Nilai dari f(0) + f(1) = ...
A. –11
B. –13
C. –15
D. –17
Penyelesaian: Lihat/Tutup f(2x+3)=2x5
Misal: 2x+3=p2x=p3x=p32
Maka:
f(2x+3)=2x5f(p)=2(p32)5f(p)=p8
f(0)=08=8
f(1)=18=7
f(0)+f(1)=8+(7)=15
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 6
Diketahui x2+ax+6x+1=x+b untuk semua nilai x positif. Nilai 2ab adalah ...
A. 6
B. 7
C. 8
D. 9
Penyelesaian: Lihat/Tutup x2+ax+6x+1=x+bx2+ax+6=(x+1)(x+b)x2+ax+6=x2+(b+1)x+b
Dengan melihat koefisien x dan konstanta maka:
b=6
a=b+1=6+1a=7
Nilai 2ab=2.76=8
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 7
Sebuah segitiga memiliki panjang sisi 12 cm, 16 cm, dan 19 cm. Segitiga tersebut merupakan jenis segitiga ...
A. Sama kaki
B. Siku-siku
C. Lancip
D. Tumpul
Penyelesaian: Lihat/Tutup Perhatikan dua sisi terpendek: 12 cm dan 16 cm. Jika segitiga tersebut segitiga siku-siku maka panjang sisi terpanjangnya harus memenuhi teorema pythagoras, yaitu:
c=122+162=144+256=400c=20
Sementara pada soal sisi terpanjangnya 19 cm < 20 cm, maka segitiga tersebut adalah segitiga lancip.
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 8
Gambar di bawah ini menunjukkan segitiga siku-siku dengan panjang sisi (x5) cm, (x+2) cm, dan (x+3) cm. Luas segitiga tersebut adalah ... cm2.
Seleksi Akademik SMA Taruna Nusantara
A. 30
B. 48
C. 60
D. 78
Penyelesaian: Lihat/Tutup i) x+3>0x>3
ii) x+2>0x>2
iii) x5>0x>5
dari i), ii) dan iii) diperoleh: x>5
Teorema pythagoras:
(x+3)2=(x+2)2+(x5)2x2+6x+9=x2+4x+4+x210x+25x2+6x+9=2x26x+29x2+12x20=0x212x+20=0(x2)(x10)=0
x2=0x=2 (tidak memenuhi x>5)
x10=0x=10 (memenuhi).
Luas segitiga adalah:
L=12(x+2)(x5)=12(10+2)(105)=12×12×5L=30
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 9
Besar ABC pada gambar di bawah ini adalah...
Seleksi Akademik SMA Taruna Nusantara
A. 60
B. 65
C. 70
D. 80
Penyelesaian: Lihat/Tutup ABC=180(4x+10)
ABC=(1704x)
ACB=180(5x+5)
ACB=(1755x)
ABC+ACB+BAC=180(1704x)+(1755x)+60=1804059x=1809x=225x=25
ABC=(1704x)=(1704.25)ABC=70
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 10
Banyaknya rusuk suatu prisma tegak yang alasnya segilima beraturan adalah ... buah
A. 9
B. 10
C. 12
D. 15
Penyelesaian: Lihat/Tutup Banyak rusuk prisma segi-n adalah 3n.
Banyak rusuk prisma segi-5 adalah 3.5 = 15.
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 11
Perhatikan gambar!

Diketahui keliling lingkaran 314 cm, besar POQ=72, dan nilai π=3,14. Luas juring POQ adalah ….
A. 1.470 cm2
B. 1.570 cm2
C. 2.570 cm2
D. 7.850 cm2
Penyelesaian: Lihat/Tutup K=2πr
K=3142πr=3142×3,14×r=314r=3142×3,14r=50 LuasJuringPOQLuasLingkaran=POQ360LuasJuringPOQπr2=72360LuasJuringPOQ3,14×502=15LuasJuringPOQ=3,14×50×505LuasJuringPOQ=1.570
Jadi, luas juring POQ adalah 1.570 cm2
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 12
Luas daerah yang diarsir pada gambar di bawah ini (π = 3,14) adalah ... cm2.
Seleksi Akademik SMA Taruna Nusantara
A. 57,0
B. 34,0
C. 27,5
D. 22,5
Penyelesaian: Lihat/Tutup Luar arsir = 2 kali luas tembereng lingkaran.
Larsir=2(14πr2r22)=2(14.(3,14).1021022)=2(157250)Larsir=57
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 13
Pada gambar di bawah ini, bidang alas balok berukuran AB = 30 cm, BC = 15 cm, dan volume limas H.ABCD = 2.250 cm3. Volume balok ABCD.EFGH yang berada di luar limas adalah ... cm3.
Seleksi Akademik Masuk SMA Taruna Nusantara
A. 6.750
B. 4.500
C. 3.250
D. 2.250
Penyelesaian: Lihat/Tutup VH.ABCD=13.VABCD.EFGHVABCD.EFGH=3×VH.ABCD=3×2.250VABCD.EFGH=6.750
Volume balok ABCD.EFGH yang berada di luar limas adalah:
= VABCD.EFGHVH.ABCD
= 6.750 – 2.250
= 4.500
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 14
Alas sebuah kerucut pejal berhimpit dengan alas setengah bola pejal. Tinggi kerucut 12 cm. Diameter setengah bola tersebut adalah 30 cm. Jika jumlah volume keduanya 7.681 cm3, maka jari-jari kerucut adalah ...
A. 20 cm
B. 14 cm
C. 10 cm
D. 7 cm
Penyelesaian: Lihat/Tutup Perhatikan gambar berikut!
Seleksi Akademik Masuk SMA Taruna Nusantara
R = jari-jari bola
r = jari-jari kerucut
maka:
VKerucut+V1/2Bola=7.68113πr2.t+12.43πR3=7.68113πr2×12+23(3,14)×153=7.6814π×r2+7.065=7.6814π×r2=616π×r2=154227.×r2=154r2=154×722r2=49r=7
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 15
Dalam suatu kelas dilakukan pendataan tentang kegiatan ekstrakurikuler olahraga yang diikuti oleh siswa di kelas tersebut. Didapatkan data sebagai berikut:
13 siswa mengikuti atletik
13 siswa mengikuti sepak takraw
11 siswa mengikuti basket
3 siswa mengikuti atletik dan sepak takraw
3 siswa mengikuti atletik dan basket
4 siswa mengikuti sepak takraw dan basket
2 siswa mengikuti ketiga kegiatan ekstrakulikuler olahraga
3 siswa tidak mengikuti ketiga kegiatan ekstrakulikuler olahraga
Banyaknya siswa dalam 1 kelas tersebut adalah ...
A. 29
B. 30
C. 31
D. 32
Penyelesaian: Lihat/Tutup Data kita sajikan ke dalam diagram venn, sebagai berikut:
Seleksi Calon Siswa SMA Taruna Nusantara
Dari diagram venn diperoleh banyak siswa 1 kelas adalah:
= 9 + 1 + 2 + 1 + 3 + 8 + 2 + 6
= 32
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 16
Suatu klub bulu tangkis memiliki 4 pemain putra dan 5 pemain putri. Jika akan dibentuk 1 regu campuran untuk pertandingan bulu tangkis maka banyaknya susunan pemain yang mungkin adalah ...
A. 9
B. 18
C. 20
D. 25
Penyelesaian: Lihat/Tutup Untuk membentuk 1 regu ganda campuran dibutuhkan 1 putra dan 1 putri.
Banyak susunan pemain yang mungkin adalah:
= banyak cara memilih 1 putra dari 4 putra dan banyak cara memilih 1 putri dari 5 putri
= 4 x 5
= 20
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 17
Banyak anggota ruang sampel pada pelemparan sekeping uang logam dan sebuah dadu yang dilakukan secara bersamaan adalah ...
A. 12 titik sampel
B. 18 titik sampel
C. 20 titik sampel
D. 24 titik sampel
Penyelesaian: Lihat/Tutup Banyak anggota ruang sampel pada pelemparan sekeping uang logam adalah 2 titik sampel.
Banyak anggota ruang sampel pada pelemparan sebuah dadu adalah 6 titik sampel.

Jadi, banyak ruang sampel pada pelemparan sekeping uang logam dan sebuah dadu secara bersamaan adalah 2 x 6 = 12 titik sampel.
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 18
Data 540 siswa SMA Taruna Nusantara diketahui bahwa pekerjaan orang tua para siswa tersebut tergambar dalam diagram di bawah ini. Banyak orang tua siswa yang berprofesi swasta adalah ...
Latihan Soal SMA Taruna Nusantara
A. 30
B. 45
C. 50
D. 60
Penyelesaian: Lihat/Tutup Besar sudut diagram swasta adalah:
= 360(60+45+135+90)
= 30
Banyak orang tua yang berprofesi swasta adalah:
= 30360×540
= 45 orang.
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 19
Alisha mendapatkan nilai rata-rata dari tiga ulangan matematika yang diikutinya adalah 81. Nilai ulangan yang pertama 85. Nilai ulangan ketiga lebih rendah 4 dari nilai ulangan kedua. Nilai ulangan Alisha yang kedua adalah ...
A. 81
B. 82
C. 84
D. 85
Penyelesaian: Lihat/Tutup x¯=81; x1=85; x3=x24; x2 = ?
x¯=81x1+x2+x33=81x1+x2+x3=24385+x2+(x24)=2432x2+81=2432x2=162x2=81
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 20
Siswa dinyatakan lulus ujian jika nilainya lebih dari rata-rata nilai seluruh peserta ujian. Diagram di bawah ini, menunjukkan nilai dari seluruh peserta. Banyak siswa yang tidak lulus adalah ...
Soal Tes Masuk SMA Taruna Nusantara
A. 6 siswa
B. 9 siswa
C. 11 siswa
D. 15 siswa
Penyelesaian: Lihat/Tutup x¯=fi.xifi=3×5+6×6+2×7+4×8+4×9+1×103+6+2+4+4+1=15+36+14+32+36+1020=15+36+14+32+36+1020=14320x¯=7,15
Siswa dinyatakan lulus ujian jika nilainya lebih dari rata-rata nilai seluruh peserta ujian. Jadi, siswa yang lulus adalah siswa yang nilainya 8, 9, dan 10.
Banyak siswa yang lulus adalah:
= 4 + 4 + 1
= 9 orang
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 21
Hasil dari 823.1614.2512813.1612.5 adalah ...
A. 8
B. 4
C. 2
D. 1
Penyelesaian: Lihat/Tutup 823.1614.2512813.1612.5=(23)23.(24)14.(52)12(23)13.(42)12.5=4.2.52.4.5=1
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 22
Bentuk rasional dari 41+125+13240+2488122 adalah ...
A. 12+2
B. 122
C. 14+2
D. 142
Penyelesaian: Lihat/Tutup Ingat:
Untuk a>b maka:
1) (a+b)+2ab=a+b
2) (a+b)2ab=ab
41+125+13240+2488122
= 41+2.65+13240+242.48122
= (36+5)+2.36×5+(8+5)28×5+(16+8)2.16×8122
= 36+5+85+168122
= 10122×12+212+2
= 10(12+2)122
= 12+2
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 23
Sebuah Gedung pertunjukan terdiri atas 20 baris kursi penonton yang disusun dari depan ke belakang dengan pertambahan kursi yang sama. Pada baris yang pertama (terdepan) tersusun 10 kursi, sedangkan pada baris kelima tersusun 30 kursi. Pada malam tersebut, jumlah penonton yang hadir di dalam Gedung itu adalah ...
A. 1150 orang
B. 1100 orang
C. 1050 orang
D. 1000 orang
Penyelesaian: Lihat/Tutup Permasalahan di atas berkaitan dengan Deret Aritmetika.
Un=a+(n1)b
a=10 dan
U5=30a+4b=3010+4b=304b=20b=5
Sn=n2(2a+(n1)b)
Jumlah penonton yang hadir di dalam gedung adalah:
S20=202(2.10+(201).5)=10(20+95)S20=1150
Jawaban: A
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 24
Urutan 38; 0,5; 1720; dan 7% dari kecil ke besar adalah ...
A. 1720; 38; 0,5 dan 7%
B. 7%; 38; 0,5 dan 1720
C. 0,5; 38; 7% dan 1720
D. 7%; 0,5; 1720 dan 38
Penyelesaian: Lihat/Tutup 38=3×12,58×12,5=37,5100=0,375
1720=17×520×5=85100=0,85
7% = 0,07
Jadi, urutan dari kecil ke besar adalah:
0,07; 0,375; 0,5; 0,85
7%; 38; 0,5; 1720
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 25
Nilai dari 3.8729311+2 = ...
A. 112
B. 3(11+2)
C. 2(112)
D. 5(11+2)
Penyelesaian: Lihat/Tutup 3.8729311+2=3.8×27311+2=3.23×33311+2=3×2×311+2=1811+2×112112=18(112)112=2(112)
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 26
Seorang siswa mengerjakan 40 soal, 27 soal benar, 8 soal salah dan sisanya tidak dikerjakan. Jika satu soal dijawab benar nilainya 4, salah nilainya –3, serta tidak menjawab nilainya – 1, maka nilai yang diperoleh siswa tersebut adalah ...
A. 87
B. 83
C. 80
D. 79
Penyelesaian: Lihat/Tutup Jumlah soal = 40
Soal benar (B) = 27
Soal salah (S) = 8
Tidak dijawab (K)= 40 – 27 – 8 = 5
Jadi, nilai yang diperoleh siswa adalah:
= 4xB + (-3)xS + (-1)xK
= 4x27 – 3x8 – 1x5
= 108 – 24 – 5
= 79
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 27
Diketahui suku ke-3 suatu barisan geometri adalah 13 dan suku ke-5 adalah 127. Suku ke-8 dari barisan geometri tersebut adalah ...
A. 121
B. 181
C. 1243
D. 1729
Penyelesaian: Lihat/Tutup Barisan Geometri:
r53=U5U3=12713r2=19r=13
U8=U5.r85=127.(13)3U8=1729
Jawaban: D
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 28
Seorang pegawai toko mendapat gaji per bulan sebesar Rp. 1.600.000,00 dengan penghasilan tidak kena pajak sebesar Rp. 400.000,00. Jika besar pajak penghasilan 15%, besar gaji yang diterima adalah ...
A. Rp. 1.200.000,00
B. Rp. 1.360.000,00
C. Rp. 1.420.000,00
D. Rp. 1.480.000,00
Penyelesaian: Lihat/Tutup Gaji = Rp. 1.600.000,00
Tidak kena pajak = Rp. 400.000,00
Yang kena pajak = Rp. 1.600.000,00 – Rp. 400.000,00
Yang kena pajak = Rp. 1.200.000,00
Pajak penghasila 15% maka gaji yang diterima adalah:
= (100 – 15)% x 1.200.000 + 400.000
= 1.020.000 + 400.000
= 1.420.000
Jawaban: C
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 29
Perhatikan pemfaktoran berikut:
I. 3x25x2=(3x1)(x+2)
II. 9x24=(3x+2)(3x2)
III. x25x+14=(x7)(x2)
IV. x2+x20=(x+5)(x4)
Pernyataan yang benar adalah ...
A. I dan III
B. II dan IV
C. I, II dan III
D. IV saja
Penyelesaian: Lihat/Tutup Pernyataan I:
3x25x2=(3x1)(x+2)=3x2+6xx23x25x2=3x2+5x2(Salah)
Pernyataan II:
9x24=(3x+2)(3x2)=9x26x+6x49x24=9x24(Benar)
Pernyataan III:
x25x+14=(x7)(x2)=x22x7x+14x25x+14=x29x+14(Salah)
Pernyataan IV:
x2+x20=(x+5)(x4)=x24x+5x20x2+x20=x2+x20(Benar)
Jadi, pernyataan yang benar adalah II dan IV.
Jawaban: B
Video Pembahasan:
Seleksi SMA Taruna Nusantara 2018 No. 30
Penyelesaian dari 23x14y=3 dan 32x+y=13 adalah x dan y. Nilai x2y = ...
A. –2
B. –1
C. 1
D. 2
Penyelesaian: Lihat/Tutup 23x14y=38x3y=36
32x+y=133x+2y=26
8x3y=363x+2y=26|×3×8
24x9y=10824x+16y=208
-------------------------------- (-)
25y=100y=4
3x+2y=263x+2.4=263x=18x=6
Nilai x2y=62.4=2
Jawaban: A
Video Pembahasan:
By: Catatan Matematika

1 comment for "Pembahasan Soal SMA Taruna Nusantara Seleksi Akademik Tahun 2018 - Latihan Soal 2025"

Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.