Soal Persamaan Trigonometri Dasar dan Pembahasan
Hallo...! Pengunjung setia Catatan Matematika, kali ini Bang RP (Reikson Panjaitan, S.Pd) akan berbagi kumpulan soal Persamaan Trigonometri Dasar berserta pembahasannya. Ayo... manfaatkan website Catatan Matematika ini untuk belajar matematika secara online.
A. $\{20^\circ ,140^\circ \}$
B. $\{50^\circ ,170^\circ \}$
C. $\{20^\circ ,50^\circ ,140^\circ \}$
D. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
E. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ ,200^\circ \}$
$\sin (3x-15^\circ )=\sin 45^\circ $
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x-15^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-15^\circ &= 45^\circ +k.360^\circ \\ 3x &= 45^\circ +15^\circ +k.360^\circ \\ 3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x-15^\circ &= (180^\circ -45^\circ )+k.360^\circ \\ 3x-15^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +15^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
HP = $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
Jawaban: D
A. $\{30^\circ ,60^\circ ,90^\circ \}$
B. $\{60^\circ ,90^\circ ,120^\circ \}$
C. $\{90^\circ ,120^\circ ,150^\circ \}$
D. $\{120^\circ ,150^\circ ,240^\circ \}$
E. $\{120^\circ ,180^\circ ,240^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x$ dan $g(x)=-x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= -x+k.360^\circ \\ 3x &= k.360^\circ \\ x &= k.120^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=120^\circ $
$k=2\to x=240^\circ $
$k=3\to x=360^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x &= 180^\circ +x+k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
HP = $\{0^\circ ,120^\circ ,180^\circ ,240^\circ ,360^\circ \}$
Jawaban: E
A. $90^\circ $
B. $110^\circ $
C. $120^\circ $
D. $130^\circ $
E. $230^\circ $
$\tan (3x+60^\circ )=\tan 60^\circ $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=3x+60^\circ $ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 3x+60^\circ &= 60^\circ +k.180^\circ \\ 3x &= 60^\circ -60^\circ +k.180^\circ \\ 3x &= k.180^\circ \\ x &= k.60^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=60^\circ $
$k=2\to x=120^\circ $
$k=3\to x=180^\circ $
$k=4\to x=240^\circ $
$k=5\to x=300^\circ $
$k=6\to x=360^\circ $
HP = $\{0^\circ ,60^\circ ,120^\circ ,180^\circ ,240^\circ ,300^\circ ,360^\circ \}$
Jawaban: C
A. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ \}$
B. $\{135^\circ ,195^\circ ,225^\circ ,255^\circ \}$
C. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,75^\circ ,195^\circ ,255^\circ \}$
E. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
$\begin{align}\sin 4x-\cos 2x &= 0 \\ \sin 4x &= \cos 2x \\ \sin 4x &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=4x$ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}4x &= 90^\circ -2x+k.360^\circ \\ 4x+2x &= 90^\circ +k.360^\circ \\ 6x &= 90^\circ +k.360^\circ \\ x &= 15^\circ +k.60^\circ \\ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=75^\circ $
$k=2\to x=135^\circ $
$k=3\to x=195^\circ $
$k=4\to x=255^\circ $
$k=5\to x=315^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}4x &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ 4x &= 90^\circ +2x+k.360^\circ \\ 4x-2x &= 90^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Jawaban: E
A. 1 : 1
B. 1 : 2
C. 2 : 3
D. 3 : 4
E. 4 : 5
$A=120^\circ $ atau $A=240^\circ $
Sudut A terkecil : sudut A terbesar
= $120^\circ :240^\circ $
= 1 : 2
Jawaban: B
A. $\left\{ \frac{\pi }{2},\frac{\pi }{3},\frac{\pi }{6} \right\}$
B. $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
C. $\left\{ \frac{\pi }{2},\frac{\pi }{6},\frac{7\pi }{6} \right\}$
D. $\left\{ \frac{7\pi }{6},\frac{4\pi }{3},\frac{11\pi }{6} \right\}$
E. $\left\{ \frac{4\pi }{3},\frac{11\pi }{6},2\pi \right\}$
$\begin{align}\cos 2x-\sin x &= 0 \\ \cos 2x &= \sin x \\ \cos 2x &= \cos (90^\circ -x) \end{align}$
Persamaan trigonometri dasar,$\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=90^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 90^\circ -x+k.360^\circ \\ 2x+x &= 90^\circ +k.360^\circ \\ 3x &= 90^\circ +k.360^\circ \\ x &= 30^\circ +k.120^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=150^\circ $
$k=2\to x=270^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(90^\circ -x)+k.360^\circ \\ 2x &= -90^\circ +x+k.360^\circ \\ 2x-x &= -90^\circ +k.360^\circ \\ x &= -90^\circ +k.360^\circ \end{align}$
$k=1\to x=270^\circ $
HP = $\left\{ 30^\circ ,150^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{30^\circ }{180^\circ }\pi ,\frac{150^\circ }{180^\circ }\pi ,\frac{270^\circ }{180^\circ }\pi \right\}$ = $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
Jawaban: B
A. $\{45^\circ ,120^\circ \}$
B. $\{45^\circ ,135^\circ \}$
C. $\{60^\circ ,135^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,180^\circ \}$
$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= (180^\circ +x)+k.360^\circ \\ 2x-x &= 180^\circ +k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ +x)+k.360^\circ \\ 2x &= -180^\circ -x+k.360^\circ \\ 2x+x &= -180^\circ +k.360^\circ \\ 3x &= -180^\circ +k.360^\circ \\ x &= -60^\circ +k.120^\circ \end{align}$
$k=1\to x=60^\circ $
HP = $\{60^\circ ,180^\circ \}$
Jawaban: E
A. $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
B. $\{60^\circ ,120^\circ ,210^\circ ,270^\circ \}$
C. $\{30^\circ ,120^\circ ,210^\circ ,300^\circ \}$
D. $\{60^\circ ,90^\circ ,240^\circ ,270^\circ \}$
E. $\{30^\circ ,90^\circ ,240^\circ ,300^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=120^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -60^\circ +k.360^\circ \\ 2x &= 60^\circ +k.360^\circ \\ x &= 30^\circ +k.180^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=210^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= -120^\circ +k.360^\circ \\ 2x &= -120^\circ -60^\circ +k.360^\circ \\ 2x &= -180^\circ +k.360^\circ \\ x &= -90^\circ -k.180^\circ \end{align}$
$k=-1\to x=90^\circ $
$k=-2\to x=270^\circ $
HP = $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
Jawaban: A
A. $\{120^\circ ,180^\circ \}$
B. $\{150^\circ ,260^\circ \}$
C. $\{180^\circ ,270^\circ \}$
D. $\{200^\circ ,320^\circ \}$
E. $\{210^\circ ,330^\circ \}$
$x=210^\circ $ atau $x=330^\circ $
HP = $\{210^\circ ,330^\circ \}$
Jawaban: E
A. $\{30^\circ ,120^\circ \}$
B. $\{30^\circ ,300^\circ \}$
C. $\{30^\circ ,330^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,300^\circ \}$
$x=60^\circ $ atau $x=300^\circ $
HP = $\{60^\circ ,300^\circ \}$
Jawaban: E
A. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
B. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
C. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
D. $\{10^\circ ,60^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
E. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,340^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x$ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 30^\circ +k.360^\circ \\ x &= 10^\circ +k.120^\circ \end{align}$
$k=0\to x=10^\circ $
$k=1\to x=130^\circ $
$k=2\to x=250^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x &= 180^\circ -30^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
HP = $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Jawaban: A
A. $\{10^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
B. $\{9^\circ ,63^\circ ,91^\circ ,135^\circ \}$
C. $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
D. $\{9^\circ ,73^\circ ,81^\circ ,153^\circ \}$
E. $\{9^\circ ,83^\circ ,135^\circ ,153^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=5x$ dan $\cos g(x)$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}5x &= 45^\circ +k.360^\circ \\ x &= 9^\circ +k.72^\circ \end{align}$
$k=0\to x=9^\circ $
$k=1\to x=81^\circ $
$k=2\to x=153^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}5x &= -45^\circ +k.360^\circ \\ x &= -9^\circ +k.72^\circ \end{align}$
$k=1\to x=63^\circ $
$k=2\to x=135^\circ $
HP = $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
Jawaban: C
A. $\{15^\circ ,60^\circ ,145^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
B. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,185^\circ ,240^\circ ,285^\circ ,330^\circ \}$
C. $\{25^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
D. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
E. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,340^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=4x$ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 4x &= 60^\circ +k.180^\circ \\ x &= 15^\circ +k.45^\circ \end{align}$
$x=0\to x=15^\circ $
$x=1\to x=60^\circ $
$x=2\to x=105^\circ $
$x=3\to x=150^\circ $
$x=4\to x=195^\circ $
$x=5\to x=240^\circ $
$x=6\to x=285^\circ $
$x=7\to x=330^\circ $
HP = $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
Jawaban: D
A. $\left\{ \frac{\pi }{4},\frac{5\pi }{4},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{5\pi }{3},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
C. $x=\frac{\pi }{2}+\frac{1}{2}k\pi $
D. $\left\{ 0,\frac{\pi }{2},\pi \right\}$
E. $x=\frac{\pi }{6}+\frac{1}{2}k\pi $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=\frac{\pi }{3}$ maka:
$\begin{align}f(x) &= g(x)+k.\pi \\ 2x &= \frac{\pi }{3}+k.\pi \\ x &= \frac{\pi }{6}+\frac{1}{2}k\pi \end{align}$
Jawaban: E
A. $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ ,300^\circ \}$
C. $\{60^\circ ,90^\circ ,300^\circ ,450^\circ ,510^\circ \}$
D. $\{90^\circ ,150^\circ ,300^\circ ,450^\circ \}$
E. $\{30^\circ ,60^\circ ,90^\circ ,150^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +30^\circ +k.360^\circ \\ x &= 90^\circ +k.360^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=450^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-30^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +30^\circ +k.360^\circ \\ x &= 150^\circ +k.360^\circ \end{align}$
$k=0\to x=150^\circ $
$k=1\to x=510^\circ $
HP = $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
Jawaban: A
A. $\{0^\circ ,20^\circ ,60^\circ \}$
B. $\{0^\circ ,20^\circ ,100^\circ \}$
C. $\{20^\circ ,60^\circ ,100^\circ \}$
D. $\{20^\circ ,100^\circ ,140^\circ \}$
E. $\{100^\circ ,140^\circ ,180^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x$ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x &= -60^\circ +k.360^\circ \\ x &= -20^\circ +k.120^\circ \end{align}$
$k=1\to x=100^\circ $
HP = $\{20^\circ ,100^\circ ,140^\circ \}$
Jawaban: D
A. $\{60^\circ ,90^\circ ,180^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,180^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{30^\circ ,150^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x-45^\circ $ dan $g(x)=135^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +45^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= -135^\circ +k.360^\circ \\ 3x &= -135^\circ +45^\circ +k.360^\circ \\ 3x &= -90^\circ +k.360^\circ \\ x &= -30^\circ +k.120^\circ \end{align}$
$k=1\to x=90^\circ $
HP = $\{60^\circ ,90^\circ ,180^\circ \}$
Jawaban: A
A. $\{45^\circ ,135^\circ \}$
B. $\{90^\circ ,270^\circ \}$
C. $\{45^\circ ,315^\circ \}$
D. $\{45^\circ \}$
E. $\{45^\circ ,135^\circ ,225^\circ ,315^\circ \}$
Jawaban: D
A. $\{75^\circ ,300^\circ \}$
B. $\{75^\circ ,345^\circ \}$
C. $\{50^\circ ,250^\circ \}$
D. $\{65^\circ ,345^\circ \}$
E. $\{60^\circ ,250^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 45^\circ +k.360^\circ \\ x &= 45^\circ +30^\circ +k.360^\circ \\ x &= 75^\circ +k.360^\circ \end{align}$
$k=0\to x=75^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= -45^\circ +k.360^\circ \\ x &= -45^\circ +30^\circ +k.360^\circ \\ x &= -15^\circ +k.360^\circ \end{align}$
$k=1\to x=345^\circ $
HP = $\{75^\circ ,345^\circ \}$
Jawaban: B
A. $\{30^\circ \}$
B. $\{30^\circ ,150^\circ \}$
C. $\{60^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{45^\circ ,145^\circ \}$
$x=30^\circ $ atau $x=150^\circ $
HP = $\{30^\circ ,150^\circ \}$
Jawaban: B
A. $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{\pi }{6} \right\}$
C. $\left\{ \frac{\pi }{3},\frac{\pi }{2} \right\}$
D. $\left\{ \frac{\pi }{3},\frac{5\pi }{6} \right\}$
E. $\left\{ \frac{2\pi }{3},\frac{5\pi }{6} \right\}$
$x=60^\circ =\frac{60^\circ }{180^\circ }\pi =\frac{\pi }{3}$ atau $x=120^\circ =\frac{120^\circ }{180^\circ }\pi =\frac{2\pi }{3}$
HP = $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
Jawaban: A
A. $\{30^\circ ,60^\circ ,180^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ \}$
C. $\{30^\circ ,180^\circ ,300^\circ \}$
D. $\{60^\circ ,120^\circ ,270^\circ \}$
E. $\{60^\circ ,180^\circ ,300^\circ \}$
$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ -x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 180^\circ -x+k.360^\circ \\ 2x+x &= 180^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
$k=2\to x=300^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ -x)+k.360^\circ \\ 2x &= -180^\circ +x+k.360^\circ \\ 2x-x &= -180^\circ +k.360^\circ \\ x &= -180^\circ +k.360^\circ \end{align}$
$k=1\to x=180^\circ $
HP = $\{60^\circ ,180^\circ ,300^\circ \}$
Jawaban: E
A. $\{70^\circ ,170^\circ ,210^\circ ,250^\circ \}$
B. $\{70^\circ ,190^\circ ,210^\circ ,250^\circ \}$
C. $\{50^\circ ,190^\circ ,250^\circ ,290^\circ \}$
D. $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
E. $\{50^\circ ,170^\circ ,250^\circ ,290^\circ \}$
$\begin{align}\sin (x-60^\circ ) &= \cos 2x \\ \sin (x-60^\circ ) &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=x-60^\circ $ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-60^\circ &= 90^\circ -2x+k.360^\circ \\ x+2x &= 90^\circ +60^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-60^\circ &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ x-60^\circ &= 90^\circ +2x+k.360^\circ \\ x-2x &= 90^\circ +60^\circ +k.360^\circ \\ -x &= 150^\circ +k.360^\circ \\ x &= -150^\circ -k.360^\circ \end{align}$
$k=-1\to x=210^\circ $
HP = $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
Jawaban: D
A. $\{15^\circ ,105^\circ ,195^\circ ,315^\circ \}$
B. $\{15^\circ ,195^\circ ,225^\circ ,315^\circ \}$
C. $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
D. $\{105^\circ ,195^\circ ,255^\circ ,315^\circ \}$
E. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=30^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x &= 30^\circ +k.180^\circ \\ x &= 15^\circ +k.90^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=105^\circ $
$k=2\to x=195^\circ $
$k=3\to x=285^\circ $
HP = $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
Jawaban: C
A. $x=45^\circ $ atau $x=135^\circ $
B. $x=-95^\circ $ atau $x=275^\circ $
C. $x=95^\circ $ atau $x=275^\circ $
D. $x=5^\circ $ atau $x=95^\circ $
E. $x=85^\circ $ atau $x=5^\circ $
$\cos (40^\circ +x)+\sin (40^\circ +x)=0$
$\begin{align}\cos (40^\circ +x) &= -\sin (40^\circ +x) \\ \cos (40^\circ +x) &= \cos (90^\circ +(40^\circ +x)) \\ \cos (40^\circ +x) &= \cos (130^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=40^\circ +x$ dan $g(x)=130^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= 130^\circ +x+k.360^\circ \\ x-x &= 130^\circ -40^\circ +k.360^\circ \\ 0 &= 90^\circ +k.360^\circ \end{align}$
(tidak ada penyelesaian)
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= -(130^\circ +x)+k.360^\circ \\ 40^\circ +x &= -130^\circ -x+k.360^\circ \\ x+x &= -130^\circ -40^\circ +k.360^\circ \\ 2x &= -170^\circ +k.360^\circ \\ x &= -85^\circ +k.180^\circ \end{align}$
$k=1\to x=95^\circ $
$k=2\to x=275^\circ $
Jadi, $x=95^\circ $ atau $x=275^\circ $
Jawaban: C
A. $\{30^\circ ,150^\circ \}$
B. $\{45^\circ ,165^\circ \}$
C. $\{15^\circ ,150^\circ \}$
D. $\{30^\circ ,60^\circ \}$
E. $\{120^\circ ,135^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 30^\circ +k.360^\circ \\ 2x &= 30^\circ -60^\circ +k.360^\circ \\ 2x &= -30^\circ +k.360^\circ \\ x &= -15^\circ +k.180^\circ \end{align}$
$k=1\to x=165^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+60^\circ &= (180^\circ -30^\circ )+k.360^\circ \\ 2x+60^\circ &= 150^\circ +k.360^\circ \\ 2x &= 150^\circ -60^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
HP = $\{45^\circ ,165^\circ \}$
Jawaban: B
A. $\{60^\circ ,135^\circ \}$
B. $\{60^\circ ,195^\circ \}$
C. $\{135^\circ ,195^\circ \}$
D. $\{135^\circ ,315^\circ \}$
E. $\{195^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-75^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-75^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +75^\circ +k.360^\circ \\ x &= 135^\circ +k.360^\circ \end{align}$
$k=0\to x=135^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-75^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-75^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +75^\circ +k.360^\circ \\ x &= 195^\circ +k.360^\circ \end{align}$
$k=0\to x=195^\circ $
HP = $\{135^\circ ,195^\circ \}$
Jawaban: C
A. $\{60^\circ ,180^\circ ,240^\circ ,360^\circ \}$
B. $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
C. $\{60^\circ ,150^\circ ,270^\circ ,330^\circ \}$
D. $\{90^\circ ,150^\circ ,210^\circ ,360^\circ \}$
E. $\{90^\circ ,120^\circ ,270^\circ ,330^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=150^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 150^\circ +k.180^\circ \\ 2x &= 150^\circ +30^\circ +k.180^\circ \\ 2x &= 180^\circ +k.180^\circ \\ x &= 90^\circ +k.90^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=180^\circ $
$k=2\to x=270^\circ $
$k=3\to x=360^\circ $
HP = $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
Jawaban: B
A. $\{45^\circ ,135^\circ ,195^\circ ,225^\circ \}$
B. $\{15^\circ ,75^\circ ,195^\circ ,245^\circ \}$
C. $\{45^\circ ,75^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
E. $\{15^\circ ,45^\circ ,135^\circ ,3155^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+30^\circ &= 60^\circ +k.360^\circ \\ 2x &= 60^\circ -30^\circ +k.360^\circ \\ 2x &= 30^\circ +k.360^\circ \\ x &= 15^\circ +k.180^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=195^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ 2x+30^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -30^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
Jawaban: D
A. $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
B. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
C. $\{75^\circ ,105^\circ ,165^\circ ,205^\circ \}$
D. $\{75^\circ ,165^\circ ,225^\circ ,315^\circ \}$
E. $\{75^\circ ,165^\circ ,255^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=120^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 120^\circ +k.180^\circ \\ 2x &= 120^\circ +30^\circ +k.180^\circ \\ 2x &= 150^\circ +k.180^\circ \\ x &= 75^\circ +k.90^\circ \end{align}$
$k=0\to x=75^\circ $
$k=1\to x=165^\circ $
$k=2\to x=255^\circ $
$k=3\to x=345^\circ $
HP = $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
Jawaban: A
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Soal Persamaan Trigonometri Dasar No. 1
Himpunan penyelesaian dari persamaan: $\sin (3x-15^\circ )=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah …A. $\{20^\circ ,140^\circ \}$
B. $\{50^\circ ,170^\circ \}$
C. $\{20^\circ ,50^\circ ,140^\circ \}$
D. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
E. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ ,200^\circ \}$
Penyelesaian: Lihat/Tutup
$\sin (3x-15^\circ )=\frac{1}{2}\sqrt{2}$$\sin (3x-15^\circ )=\sin 45^\circ $
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x-15^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-15^\circ &= 45^\circ +k.360^\circ \\ 3x &= 45^\circ +15^\circ +k.360^\circ \\ 3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x-15^\circ &= (180^\circ -45^\circ )+k.360^\circ \\ 3x-15^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +15^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
HP = $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 2
Nilai $x$ yang memenuhi persamaan $2\sin 2x+2\sin x=0$ dan $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,60^\circ ,90^\circ \}$
B. $\{60^\circ ,90^\circ ,120^\circ \}$
C. $\{90^\circ ,120^\circ ,150^\circ \}$
D. $\{120^\circ ,150^\circ ,240^\circ \}$
E. $\{120^\circ ,180^\circ ,240^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\sin 2x+2\sin x &= 0 \\ \sin 2x+\sin x &= 0 \\ \sin 2x &= -\sin x \\ \sin 2x &= \sin (-x) \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x$ dan $g(x)=-x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= -x+k.360^\circ \\ 3x &= k.360^\circ \\ x &= k.120^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=120^\circ $
$k=2\to x=240^\circ $
$k=3\to x=360^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x &= 180^\circ +x+k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
HP = $\{0^\circ ,120^\circ ,180^\circ ,240^\circ ,360^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 3
Nilai $x$ yang memenuhi $\tan (3x+60^\circ )=\sqrt{3}$ adalah ….A. $90^\circ $
B. $110^\circ $
C. $120^\circ $
D. $130^\circ $
E. $230^\circ $
Penyelesaian: Lihat/Tutup
$\tan (3x+60^\circ )=\sqrt{3}$$\tan (3x+60^\circ )=\tan 60^\circ $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=3x+60^\circ $ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 3x+60^\circ &= 60^\circ +k.180^\circ \\ 3x &= 60^\circ -60^\circ +k.180^\circ \\ 3x &= k.180^\circ \\ x &= k.60^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=60^\circ $
$k=2\to x=120^\circ $
$k=3\to x=180^\circ $
$k=4\to x=240^\circ $
$k=5\to x=300^\circ $
$k=6\to x=360^\circ $
HP = $\{0^\circ ,60^\circ ,120^\circ ,180^\circ ,240^\circ ,300^\circ ,360^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 4
Himpunan penyelesaian $\sin 4x-\cos 2x=0$ untuk $0^\circ < x < 360^\circ $ adalah ….A. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ \}$
B. $\{135^\circ ,195^\circ ,225^\circ ,255^\circ \}$
C. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,75^\circ ,195^\circ ,255^\circ \}$
E. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $\cos \alpha =\sin (90^\circ -\alpha )$.$\begin{align}\sin 4x-\cos 2x &= 0 \\ \sin 4x &= \cos 2x \\ \sin 4x &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=4x$ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}4x &= 90^\circ -2x+k.360^\circ \\ 4x+2x &= 90^\circ +k.360^\circ \\ 6x &= 90^\circ +k.360^\circ \\ x &= 15^\circ +k.60^\circ \\ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=75^\circ $
$k=2\to x=135^\circ $
$k=3\to x=195^\circ $
$k=4\to x=255^\circ $
$k=5\to x=315^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}4x &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ 4x &= 90^\circ +2x+k.360^\circ \\ 4x-2x &= 90^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 5
Perbandingan sudut A terkecil terhadap sudut A terbesar yang memenuhi persamaan $2\cos A+1=0$ untuk $0\le A\le 2\pi $ adalah ….A. 1 : 1
B. 1 : 2
C. 2 : 3
D. 3 : 4
E. 4 : 5
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos A+1 &= 0 \\ 2\cos A &= -1 \\ \cos A &= -\frac{1}{2} \end{align}$$A=120^\circ $ atau $A=240^\circ $
Sudut A terkecil : sudut A terbesar
= $120^\circ :240^\circ $
= 1 : 2
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 6
Himpunan penyelesaian persamaan $\cos 2x-\sin x=0$ untuk $0\le x\le 2\pi $ adalah ….A. $\left\{ \frac{\pi }{2},\frac{\pi }{3},\frac{\pi }{6} \right\}$
B. $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
C. $\left\{ \frac{\pi }{2},\frac{\pi }{6},\frac{7\pi }{6} \right\}$
D. $\left\{ \frac{7\pi }{6},\frac{4\pi }{3},\frac{11\pi }{6} \right\}$
E. $\left\{ \frac{4\pi }{3},\frac{11\pi }{6},2\pi \right\}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $\sin \alpha =\cos (90^\circ -\alpha )$.$\begin{align}\cos 2x-\sin x &= 0 \\ \cos 2x &= \sin x \\ \cos 2x &= \cos (90^\circ -x) \end{align}$
Persamaan trigonometri dasar,$\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=90^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 90^\circ -x+k.360^\circ \\ 2x+x &= 90^\circ +k.360^\circ \\ 3x &= 90^\circ +k.360^\circ \\ x &= 30^\circ +k.120^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=150^\circ $
$k=2\to x=270^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(90^\circ -x)+k.360^\circ \\ 2x &= -90^\circ +x+k.360^\circ \\ 2x-x &= -90^\circ +k.360^\circ \\ x &= -90^\circ +k.360^\circ \end{align}$
$k=1\to x=270^\circ $
HP = $\left\{ 30^\circ ,150^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{30^\circ }{180^\circ }\pi ,\frac{150^\circ }{180^\circ }\pi ,\frac{270^\circ }{180^\circ }\pi \right\}$ = $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 7
Himpunan penyelesaian persamaan $\cos 2x+\cos x=0$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{45^\circ ,120^\circ \}$
B. $\{45^\circ ,135^\circ \}$
C. $\{60^\circ ,135^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,180^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $-\cos \alpha =\cos (180^\circ -\alpha )$.$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= (180^\circ +x)+k.360^\circ \\ 2x-x &= 180^\circ +k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ +x)+k.360^\circ \\ 2x &= -180^\circ -x+k.360^\circ \\ 2x+x &= -180^\circ +k.360^\circ \\ 3x &= -180^\circ +k.360^\circ \\ x &= -60^\circ +k.120^\circ \end{align}$
$k=1\to x=60^\circ $
HP = $\{60^\circ ,180^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 8
Himpunan penyelesaian persamaan $\cos (2x+60^\circ )=-\frac{1}{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
B. $\{60^\circ ,120^\circ ,210^\circ ,270^\circ \}$
C. $\{30^\circ ,120^\circ ,210^\circ ,300^\circ \}$
D. $\{60^\circ ,90^\circ ,240^\circ ,270^\circ \}$
E. $\{30^\circ ,90^\circ ,240^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (2x+60^\circ ) &= -\frac{1}{2} \\ \cos (2x+60^\circ ) &= \cos 120^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=120^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -60^\circ +k.360^\circ \\ 2x &= 60^\circ +k.360^\circ \\ x &= 30^\circ +k.180^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=210^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= -120^\circ +k.360^\circ \\ 2x &= -120^\circ -60^\circ +k.360^\circ \\ 2x &= -180^\circ +k.360^\circ \\ x &= -90^\circ -k.180^\circ \end{align}$
$k=-1\to x=90^\circ $
$k=-2\to x=270^\circ $
HP = $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 9
Himpunan penyelesaian persamaan $1+2\sin x=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{120^\circ ,180^\circ \}$
B. $\{150^\circ ,260^\circ \}$
C. $\{180^\circ ,270^\circ \}$
D. $\{200^\circ ,320^\circ \}$
E. $\{210^\circ ,330^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}1+2\sin x &= 0 \\ 2\sin x &= -1 \\ \sin x &= -\frac{1}{2} \end{align}$$x=210^\circ $ atau $x=330^\circ $
HP = $\{210^\circ ,330^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 10
Himpunan penyelesaian persamaan $2\cos x=1$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,120^\circ \}$
B. $\{30^\circ ,300^\circ \}$
C. $\{30^\circ ,330^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos x &= 1 \\ \cos x &= \frac{1}{2} \end{align}$$x=60^\circ $ atau $x=300^\circ $
HP = $\{60^\circ ,300^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 11
Himpunan penyelesaian dari $\sin 3x=\frac{1}{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
B. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
C. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
D. $\{10^\circ ,60^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
E. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,340^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin 3x &= \frac{1}{2} \\ \sin 3x &= \sin 30^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x$ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 30^\circ +k.360^\circ \\ x &= 10^\circ +k.120^\circ \end{align}$
$k=0\to x=10^\circ $
$k=1\to x=130^\circ $
$k=2\to x=250^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x &= 180^\circ -30^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
HP = $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 12
Himpunan penyelesaian dari $\cos 5x=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{10^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
B. $\{9^\circ ,63^\circ ,91^\circ ,135^\circ \}$
C. $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
D. $\{9^\circ ,73^\circ ,81^\circ ,153^\circ \}$
E. $\{9^\circ ,83^\circ ,135^\circ ,153^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 5x &= \frac{1}{2}\sqrt{2} \\ \cos 5x &= \cos 45^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=5x$ dan $\cos g(x)$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}5x &= 45^\circ +k.360^\circ \\ x &= 9^\circ +k.72^\circ \end{align}$
$k=0\to x=9^\circ $
$k=1\to x=81^\circ $
$k=2\to x=153^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}5x &= -45^\circ +k.360^\circ \\ x &= -9^\circ +k.72^\circ \end{align}$
$k=1\to x=63^\circ $
$k=2\to x=135^\circ $
HP = $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 13
Himpunan penyelesaian dari persamaan $\tan 4x=\sqrt{3}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{15^\circ ,60^\circ ,145^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
B. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,185^\circ ,240^\circ ,285^\circ ,330^\circ \}$
C. $\{25^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
D. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
E. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,340^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\tan 4x &= \sqrt{3} \\ \tan 4x &= \tan 60^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=4x$ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 4x &= 60^\circ +k.180^\circ \\ x &= 15^\circ +k.45^\circ \end{align}$
$x=0\to x=15^\circ $
$x=1\to x=60^\circ $
$x=2\to x=105^\circ $
$x=3\to x=150^\circ $
$x=4\to x=195^\circ $
$x=5\to x=240^\circ $
$x=6\to x=285^\circ $
$x=7\to x=330^\circ $
HP = $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 14
Jika $\tan 2x=\tan \frac{\pi }{3}$, maka harga $x$ adalah ….A. $\left\{ \frac{\pi }{4},\frac{5\pi }{4},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{5\pi }{3},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
C. $x=\frac{\pi }{2}+\frac{1}{2}k\pi $
D. $\left\{ 0,\frac{\pi }{2},\pi \right\}$
E. $x=\frac{\pi }{6}+\frac{1}{2}k\pi $
Penyelesaian: Lihat/Tutup
$\tan 2x=\tan \frac{\pi }{3}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=\frac{\pi }{3}$ maka:
$\begin{align}f(x) &= g(x)+k.\pi \\ 2x &= \frac{\pi }{3}+k.\pi \\ x &= \frac{\pi }{6}+\frac{1}{2}k\pi \end{align}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 15
Himpunan penyelesaian dari $\sin (x-30^\circ )=\frac{1}{2}\sqrt{3}$ untuk $0^\circ \le x\le 720^\circ $ adalah ….A. $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ ,300^\circ \}$
C. $\{60^\circ ,90^\circ ,300^\circ ,450^\circ ,510^\circ \}$
D. $\{90^\circ ,150^\circ ,300^\circ ,450^\circ \}$
E. $\{30^\circ ,60^\circ ,90^\circ ,150^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin (x-30^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (x-30^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +30^\circ +k.360^\circ \\ x &= 90^\circ +k.360^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=450^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-30^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +30^\circ +k.360^\circ \\ x &= 150^\circ +k.360^\circ \end{align}$
$k=0\to x=150^\circ $
$k=1\to x=510^\circ $
HP = $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 16
Himpunan penyelesaian dari persamaan $2\cos 3x=1$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{0^\circ ,20^\circ ,60^\circ \}$
B. $\{0^\circ ,20^\circ ,100^\circ \}$
C. $\{20^\circ ,60^\circ ,100^\circ \}$
D. $\{20^\circ ,100^\circ ,140^\circ \}$
E. $\{100^\circ ,140^\circ ,180^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos 3x &= 1 \\ \cos 3x &= \frac{1}{2} \\ \cos 3x &= \cos 60^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x$ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x &= -60^\circ +k.360^\circ \\ x &= -20^\circ +k.120^\circ \end{align}$
$k=1\to x=100^\circ $
HP = $\{20^\circ ,100^\circ ,140^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 17
Himpunan penyelesaian persamaan $\cos (3x-45^\circ )=-\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{60^\circ ,90^\circ ,180^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,180^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{30^\circ ,150^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (3x-45^\circ ) &= -\frac{1}{2}\sqrt{2} \\ \cos (3x-45^\circ ) &= \cos 135^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x-45^\circ $ dan $g(x)=135^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +45^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= -135^\circ +k.360^\circ \\ 3x &= -135^\circ +45^\circ +k.360^\circ \\ 3x &= -90^\circ +k.360^\circ \\ x &= -30^\circ +k.120^\circ \end{align}$
$k=1\to x=90^\circ $
HP = $\{60^\circ ,90^\circ ,180^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 18
Diketahui persamaan $\sqrt{2}\cos x-1=0$, $0^\circ \le x\le 180^\circ $. Himpunan penyelesaian persamaan tersebut adalah ….A. $\{45^\circ ,135^\circ \}$
B. $\{90^\circ ,270^\circ \}$
C. $\{45^\circ ,315^\circ \}$
D. $\{45^\circ \}$
E. $\{45^\circ ,135^\circ ,225^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{2}\cos x-1 &= 0 \\ \sqrt{2}\cos x &= 1 \\ \cos x &= \frac{1}{\sqrt{2}} \\ \cos x &= \frac{1}{2}\sqrt{2} \\ x &= 45^\circ \end{align}$Jawaban: D
Soal Persamaan Trigonometri Dasar No. 19
Himpunan penyelesaian dari $\cos (x-30^\circ )=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{75^\circ ,300^\circ \}$
B. $\{75^\circ ,345^\circ \}$
C. $\{50^\circ ,250^\circ \}$
D. $\{65^\circ ,345^\circ \}$
E. $\{60^\circ ,250^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (x-30^\circ ) &= \frac{1}{2}\sqrt{2} \\ \cos (x-30^\circ ) &= \cos 45^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 45^\circ +k.360^\circ \\ x &= 45^\circ +30^\circ +k.360^\circ \\ x &= 75^\circ +k.360^\circ \end{align}$
$k=0\to x=75^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= -45^\circ +k.360^\circ \\ x &= -45^\circ +30^\circ +k.360^\circ \\ x &= -15^\circ +k.360^\circ \end{align}$
$k=1\to x=345^\circ $
HP = $\{75^\circ ,345^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 20
Untuk $0^\circ \le x\le 180^\circ $, himpunan penyelesaian persamaan trigonometri $4\sin x-2=0$ adalah ….A. $\{30^\circ \}$
B. $\{30^\circ ,150^\circ \}$
C. $\{60^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{45^\circ ,145^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}4\sin x-2 &= 0 \\ 4\sin x &= 2 \\ \sin x &= \frac{2}{4} \\ \sin x &= \frac{1}{2} \end{align}$$x=30^\circ $ atau $x=150^\circ $
HP = $\{30^\circ ,150^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 21
Himpunan penyelesaian dari persamaan $\sin x=\frac{1}{2}\sqrt{3}$ untuk $0\le x\le 2\pi $ adalah ….A. $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{\pi }{6} \right\}$
C. $\left\{ \frac{\pi }{3},\frac{\pi }{2} \right\}$
D. $\left\{ \frac{\pi }{3},\frac{5\pi }{6} \right\}$
E. $\left\{ \frac{2\pi }{3},\frac{5\pi }{6} \right\}$
Penyelesaian: Lihat/Tutup
$\sin x=\frac{1}{2}\sqrt{3}$$x=60^\circ =\frac{60^\circ }{180^\circ }\pi =\frac{\pi }{3}$ atau $x=120^\circ =\frac{120^\circ }{180^\circ }\pi =\frac{2\pi }{3}$
HP = $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 22
Himpunan penyelesaian dari persamaan trigonometri $\cos 2x+\cos x=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,60^\circ ,180^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ \}$
C. $\{30^\circ ,180^\circ ,300^\circ \}$
D. $\{60^\circ ,120^\circ ,270^\circ \}$
E. $\{60^\circ ,180^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $-\cos \alpha =\cos (180^\circ -\alpha )$.$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ -x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 180^\circ -x+k.360^\circ \\ 2x+x &= 180^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
$k=2\to x=300^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ -x)+k.360^\circ \\ 2x &= -180^\circ +x+k.360^\circ \\ 2x-x &= -180^\circ +k.360^\circ \\ x &= -180^\circ +k.360^\circ \end{align}$
$k=1\to x=180^\circ $
HP = $\{60^\circ ,180^\circ ,300^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 23
Himpunan penyelesaian dari persamaan $\sin (x-60^\circ )=\cos 2x$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{70^\circ ,170^\circ ,210^\circ ,250^\circ \}$
B. $\{70^\circ ,190^\circ ,210^\circ ,250^\circ \}$
C. $\{50^\circ ,190^\circ ,250^\circ ,290^\circ \}$
D. $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
E. $\{50^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $\sin (90^\circ -\alpha )=\cos \alpha $$\begin{align}\sin (x-60^\circ ) &= \cos 2x \\ \sin (x-60^\circ ) &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=x-60^\circ $ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-60^\circ &= 90^\circ -2x+k.360^\circ \\ x+2x &= 90^\circ +60^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-60^\circ &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ x-60^\circ &= 90^\circ +2x+k.360^\circ \\ x-2x &= 90^\circ +60^\circ +k.360^\circ \\ -x &= 150^\circ +k.360^\circ \\ x &= -150^\circ -k.360^\circ \end{align}$
$k=-1\to x=210^\circ $
HP = $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 24
Himpunan penyelesaian dari persamaan $\sqrt{6}\tan 2x-\sqrt{2}=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{15^\circ ,105^\circ ,195^\circ ,315^\circ \}$
B. $\{15^\circ ,195^\circ ,225^\circ ,315^\circ \}$
C. $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
D. $\{105^\circ ,195^\circ ,255^\circ ,315^\circ \}$
E. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{6}\tan 2x-\sqrt{2} &= 0 \\ \sqrt{6}\tan 2x &= \sqrt{2} \\ \tan 2x &= \frac{\sqrt{2}}{\sqrt{6}} \\ \tan 2x &= \frac{1}{\sqrt{3}} \\ \tan 2x &= \frac{1}{3}\sqrt{3} \\ \tan 2x &= \tan 30^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=30^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x &= 30^\circ +k.180^\circ \\ x &= 15^\circ +k.90^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=105^\circ $
$k=2\to x=195^\circ $
$k=3\to x=285^\circ $
HP = $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 25
Penyelesaian dari $\cos (40^\circ +x)+\sin (40^\circ +x)=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $x=45^\circ $ atau $x=135^\circ $
B. $x=-95^\circ $ atau $x=275^\circ $
C. $x=95^\circ $ atau $x=275^\circ $
D. $x=5^\circ $ atau $x=95^\circ $
E. $x=85^\circ $ atau $x=5^\circ $
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $-\sin \alpha =\cos (90^\circ +\alpha )$ maka:$\cos (40^\circ +x)+\sin (40^\circ +x)=0$
$\begin{align}\cos (40^\circ +x) &= -\sin (40^\circ +x) \\ \cos (40^\circ +x) &= \cos (90^\circ +(40^\circ +x)) \\ \cos (40^\circ +x) &= \cos (130^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=40^\circ +x$ dan $g(x)=130^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= 130^\circ +x+k.360^\circ \\ x-x &= 130^\circ -40^\circ +k.360^\circ \\ 0 &= 90^\circ +k.360^\circ \end{align}$
(tidak ada penyelesaian)
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= -(130^\circ +x)+k.360^\circ \\ 40^\circ +x &= -130^\circ -x+k.360^\circ \\ x+x &= -130^\circ -40^\circ +k.360^\circ \\ 2x &= -170^\circ +k.360^\circ \\ x &= -85^\circ +k.180^\circ \end{align}$
$k=1\to x=95^\circ $
$k=2\to x=275^\circ $
Jadi, $x=95^\circ $ atau $x=275^\circ $
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 26
Himpunan penyelesaian dari $6\sin (2x+60^\circ )=3$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{30^\circ ,150^\circ \}$
B. $\{45^\circ ,165^\circ \}$
C. $\{15^\circ ,150^\circ \}$
D. $\{30^\circ ,60^\circ \}$
E. $\{120^\circ ,135^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}6\sin (2x+60^\circ ) &= 3 \\ \sin (2x+60^\circ ) &= \frac{3}{6} \\ \sin (2x+60^\circ ) &= \frac{1}{2} \\ \sin (2x+60^\circ ) &= \sin 30^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 30^\circ +k.360^\circ \\ 2x &= 30^\circ -60^\circ +k.360^\circ \\ 2x &= -30^\circ +k.360^\circ \\ x &= -15^\circ +k.180^\circ \end{align}$
$k=1\to x=165^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+60^\circ &= (180^\circ -30^\circ )+k.360^\circ \\ 2x+60^\circ &= 150^\circ +k.360^\circ \\ 2x &= 150^\circ -60^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
HP = $\{45^\circ ,165^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 27
Himpunan penyelesaian dari $\sin (x-75^\circ )=\frac{1}{2}\sqrt{3}$ dengan $0^\circ \le x\le 360^\circ $ adalah ….A. $\{60^\circ ,135^\circ \}$
B. $\{60^\circ ,195^\circ \}$
C. $\{135^\circ ,195^\circ \}$
D. $\{135^\circ ,315^\circ \}$
E. $\{195^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin (x-75^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (x-75^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-75^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-75^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +75^\circ +k.360^\circ \\ x &= 135^\circ +k.360^\circ \end{align}$
$k=0\to x=135^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-75^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-75^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +75^\circ +k.360^\circ \\ x &= 195^\circ +k.360^\circ \end{align}$
$k=0\to x=195^\circ $
HP = $\{135^\circ ,195^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 28
Nilai $x$ yang memenuhi persamaan trigonometri $\sqrt{3}+3\tan (2x-30^\circ )=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{60^\circ ,180^\circ ,240^\circ ,360^\circ \}$
B. $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
C. $\{60^\circ ,150^\circ ,270^\circ ,330^\circ \}$
D. $\{90^\circ ,150^\circ ,210^\circ ,360^\circ \}$
E. $\{90^\circ ,120^\circ ,270^\circ ,330^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{3}+3\tan (2x-30^\circ ) &= 0 \\ 3\tan (2x-30^\circ ) &= -\sqrt{3}\\ \tan (2x-30^\circ ) &= -\frac{1}{3}\sqrt{3} \\ \tan (2x-30^\circ ) &= \tan 150^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=150^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 150^\circ +k.180^\circ \\ 2x &= 150^\circ +30^\circ +k.180^\circ \\ 2x &= 180^\circ +k.180^\circ \\ x &= 90^\circ +k.90^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=180^\circ $
$k=2\to x=270^\circ $
$k=3\to x=360^\circ $
HP = $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 29
Nilai $x$ yang memenuhi persamaan trigonometri $2+\sqrt{12}\sin (2x+30^\circ )=5$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{45^\circ ,135^\circ ,195^\circ ,225^\circ \}$
B. $\{15^\circ ,75^\circ ,195^\circ ,245^\circ \}$
C. $\{45^\circ ,75^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
E. $\{15^\circ ,45^\circ ,135^\circ ,3155^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2+\sqrt{12}\sin (2x+30^\circ ) &= 5 \\ \sqrt{12}\sin (2x+30^\circ ) &= 5-2 \\ 2\sqrt{3}\sin (2x+30^\circ ) &= 3 \\ \sin (2x+30^\circ ) &= \frac{3}{2\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ \sin (2x+30^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (2x+30^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+30^\circ &= 60^\circ +k.360^\circ \\ 2x &= 60^\circ -30^\circ +k.360^\circ \\ 2x &= 30^\circ +k.360^\circ \\ x &= 15^\circ +k.180^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=195^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ 2x+30^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -30^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 30
Himpunan penyelesaian dari persamaan $\tan (2x-30^\circ )=-\sqrt{3}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
B. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
C. $\{75^\circ ,105^\circ ,165^\circ ,205^\circ \}$
D. $\{75^\circ ,165^\circ ,225^\circ ,315^\circ \}$
E. $\{75^\circ ,165^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\tan (2x-30^\circ ) &= -\sqrt{3} \\ \tan (2x-30^\circ ) &= \tan 120^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=120^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 120^\circ +k.180^\circ \\ 2x &= 120^\circ +30^\circ +k.180^\circ \\ 2x &= 150^\circ +k.180^\circ \\ x &= 75^\circ +k.90^\circ \end{align}$
$k=0\to x=75^\circ $
$k=1\to x=165^\circ $
$k=2\to x=255^\circ $
$k=3\to x=345^\circ $
HP = $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
Jawaban: A
Post a Comment for "Soal Persamaan Trigonometri Dasar dan Pembahasan"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.