Soal Persamaan Trigonometri Dasar dan Pembahasan
Hallo...! Pengunjung setia Catatan Matematika, kali ini Bang RP (Reikson Panjaitan, S.Pd) akan berbagi kumpulan soal Persamaan Trigonometri Dasar berserta pembahasannya. Ayo... manfaatkan website Catatan Matematika ini untuk belajar matematika secara online.
A. $\{20^\circ ,140^\circ \}$
B. $\{50^\circ ,170^\circ \}$
C. $\{20^\circ ,50^\circ ,140^\circ \}$
D. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
E. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ ,200^\circ \}$
$\sin (3x-15^\circ )=\sin 45^\circ $
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x-15^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-15^\circ &= 45^\circ +k.360^\circ \\ 3x &= 45^\circ +15^\circ +k.360^\circ \\ 3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x-15^\circ &= (180^\circ -45^\circ )+k.360^\circ \\ 3x-15^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +15^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
HP = $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
Jawaban: D
A. $\{30^\circ ,60^\circ ,90^\circ \}$
B. $\{60^\circ ,90^\circ ,120^\circ \}$
C. $\{90^\circ ,120^\circ ,150^\circ \}$
D. $\{120^\circ ,150^\circ ,240^\circ \}$
E. $\{120^\circ ,180^\circ ,240^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x$ dan $g(x)=-x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= -x+k.360^\circ \\ 3x &= k.360^\circ \\ x &= k.120^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=120^\circ $
$k=2\to x=240^\circ $
$k=3\to x=360^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x &= 180^\circ +x+k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
HP = $\{0^\circ ,120^\circ ,180^\circ ,240^\circ ,360^\circ \}$
Jawaban: E
A. $90^\circ $
B. $110^\circ $
C. $120^\circ $
D. $130^\circ $
E. $230^\circ $
$\tan (3x+60^\circ )=\tan 60^\circ $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=3x+60^\circ $ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 3x+60^\circ &= 60^\circ +k.180^\circ \\ 3x &= 60^\circ -60^\circ +k.180^\circ \\ 3x &= k.180^\circ \\ x &= k.60^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=60^\circ $
$k=2\to x=120^\circ $
$k=3\to x=180^\circ $
$k=4\to x=240^\circ $
$k=5\to x=300^\circ $
$k=6\to x=360^\circ $
HP = $\{0^\circ ,60^\circ ,120^\circ ,180^\circ ,240^\circ ,300^\circ ,360^\circ \}$
Jawaban: C
A. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ \}$
B. $\{135^\circ ,195^\circ ,225^\circ ,255^\circ \}$
C. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,75^\circ ,195^\circ ,255^\circ \}$
E. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
$\begin{align}\sin 4x-\cos 2x &= 0 \\ \sin 4x &= \cos 2x \\ \sin 4x &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=4x$ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}4x &= 90^\circ -2x+k.360^\circ \\ 4x+2x &= 90^\circ +k.360^\circ \\ 6x &= 90^\circ +k.360^\circ \\ x &= 15^\circ +k.60^\circ \\ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=75^\circ $
$k=2\to x=135^\circ $
$k=3\to x=195^\circ $
$k=4\to x=255^\circ $
$k=5\to x=315^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}4x &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ 4x &= 90^\circ +2x+k.360^\circ \\ 4x-2x &= 90^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Jawaban: E
A. 1 : 1
B. 1 : 2
C. 2 : 3
D. 3 : 4
E. 4 : 5
$A=120^\circ $ atau $A=240^\circ $
Sudut A terkecil : sudut A terbesar
= $120^\circ :240^\circ $
= 1 : 2
Jawaban: B
A. $\left\{ \frac{\pi }{2},\frac{\pi }{3},\frac{\pi }{6} \right\}$
B. $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
C. $\left\{ \frac{\pi }{2},\frac{\pi }{6},\frac{7\pi }{6} \right\}$
D. $\left\{ \frac{7\pi }{6},\frac{4\pi }{3},\frac{11\pi }{6} \right\}$
E. $\left\{ \frac{4\pi }{3},\frac{11\pi }{6},2\pi \right\}$
$\begin{align}\cos 2x-\sin x &= 0 \\ \cos 2x &= \sin x \\ \cos 2x &= \cos (90^\circ -x) \end{align}$
Persamaan trigonometri dasar,$\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=90^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 90^\circ -x+k.360^\circ \\ 2x+x &= 90^\circ +k.360^\circ \\ 3x &= 90^\circ +k.360^\circ \\ x &= 30^\circ +k.120^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=150^\circ $
$k=2\to x=270^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(90^\circ -x)+k.360^\circ \\ 2x &= -90^\circ +x+k.360^\circ \\ 2x-x &= -90^\circ +k.360^\circ \\ x &= -90^\circ +k.360^\circ \end{align}$
$k=1\to x=270^\circ $
HP = $\left\{ 30^\circ ,150^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{30^\circ }{180^\circ }\pi ,\frac{150^\circ }{180^\circ }\pi ,\frac{270^\circ }{180^\circ }\pi \right\}$ = $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
Jawaban: B
A. $\{45^\circ ,120^\circ \}$
B. $\{45^\circ ,135^\circ \}$
C. $\{60^\circ ,135^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,180^\circ \}$
$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= (180^\circ +x)+k.360^\circ \\ 2x-x &= 180^\circ +k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ +x)+k.360^\circ \\ 2x &= -180^\circ -x+k.360^\circ \\ 2x+x &= -180^\circ +k.360^\circ \\ 3x &= -180^\circ +k.360^\circ \\ x &= -60^\circ +k.120^\circ \end{align}$
$k=1\to x=60^\circ $
HP = $\{60^\circ ,180^\circ \}$
Jawaban: E
A. $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
B. $\{60^\circ ,120^\circ ,210^\circ ,270^\circ \}$
C. $\{30^\circ ,120^\circ ,210^\circ ,300^\circ \}$
D. $\{60^\circ ,90^\circ ,240^\circ ,270^\circ \}$
E. $\{30^\circ ,90^\circ ,240^\circ ,300^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=120^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -60^\circ +k.360^\circ \\ 2x &= 60^\circ +k.360^\circ \\ x &= 30^\circ +k.180^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=210^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= -120^\circ +k.360^\circ \\ 2x &= -120^\circ -60^\circ +k.360^\circ \\ 2x &= -180^\circ +k.360^\circ \\ x &= -90^\circ -k.180^\circ \end{align}$
$k=-1\to x=90^\circ $
$k=-2\to x=270^\circ $
HP = $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
Jawaban: A
A. $\{120^\circ ,180^\circ \}$
B. $\{150^\circ ,260^\circ \}$
C. $\{180^\circ ,270^\circ \}$
D. $\{200^\circ ,320^\circ \}$
E. $\{210^\circ ,330^\circ \}$
$x=210^\circ $ atau $x=330^\circ $
HP = $\{210^\circ ,330^\circ \}$
Jawaban: E
A. $\{30^\circ ,120^\circ \}$
B. $\{30^\circ ,300^\circ \}$
C. $\{30^\circ ,330^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,300^\circ \}$
$x=60^\circ $ atau $x=300^\circ $
HP = $\{60^\circ ,300^\circ \}$
Jawaban: E
A. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
B. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
C. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
D. $\{10^\circ ,60^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
E. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,340^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x$ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 30^\circ +k.360^\circ \\ x &= 10^\circ +k.120^\circ \end{align}$
$k=0\to x=10^\circ $
$k=1\to x=130^\circ $
$k=2\to x=250^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x &= 180^\circ -30^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
HP = $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Jawaban: A
A. $\{10^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
B. $\{9^\circ ,63^\circ ,91^\circ ,135^\circ \}$
C. $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
D. $\{9^\circ ,73^\circ ,81^\circ ,153^\circ \}$
E. $\{9^\circ ,83^\circ ,135^\circ ,153^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=5x$ dan $\cos g(x)$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}5x &= 45^\circ +k.360^\circ \\ x &= 9^\circ +k.72^\circ \end{align}$
$k=0\to x=9^\circ $
$k=1\to x=81^\circ $
$k=2\to x=153^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}5x &= -45^\circ +k.360^\circ \\ x &= -9^\circ +k.72^\circ \end{align}$
$k=1\to x=63^\circ $
$k=2\to x=135^\circ $
HP = $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
Jawaban: C
A. $\{15^\circ ,60^\circ ,145^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
B. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,185^\circ ,240^\circ ,285^\circ ,330^\circ \}$
C. $\{25^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
D. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
E. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,340^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=4x$ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 4x &= 60^\circ +k.180^\circ \\ x &= 15^\circ +k.45^\circ \end{align}$
$x=0\to x=15^\circ $
$x=1\to x=60^\circ $
$x=2\to x=105^\circ $
$x=3\to x=150^\circ $
$x=4\to x=195^\circ $
$x=5\to x=240^\circ $
$x=6\to x=285^\circ $
$x=7\to x=330^\circ $
HP = $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
Jawaban: D
A. $\left\{ \frac{\pi }{4},\frac{5\pi }{4},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{5\pi }{3},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
C. $x=\frac{\pi }{2}+\frac{1}{2}k\pi $
D. $\left\{ 0,\frac{\pi }{2},\pi \right\}$
E. $x=\frac{\pi }{6}+\frac{1}{2}k\pi $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=\frac{\pi }{3}$ maka:
$\begin{align}f(x) &= g(x)+k.\pi \\ 2x &= \frac{\pi }{3}+k.\pi \\ x &= \frac{\pi }{6}+\frac{1}{2}k\pi \end{align}$
Jawaban: E
A. $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ ,300^\circ \}$
C. $\{60^\circ ,90^\circ ,300^\circ ,450^\circ ,510^\circ \}$
D. $\{90^\circ ,150^\circ ,300^\circ ,450^\circ \}$
E. $\{30^\circ ,60^\circ ,90^\circ ,150^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +30^\circ +k.360^\circ \\ x &= 90^\circ +k.360^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=450^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-30^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +30^\circ +k.360^\circ \\ x &= 150^\circ +k.360^\circ \end{align}$
$k=0\to x=150^\circ $
$k=1\to x=510^\circ $
HP = $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
Jawaban: A
A. $\{0^\circ ,20^\circ ,60^\circ \}$
B. $\{0^\circ ,20^\circ ,100^\circ \}$
C. $\{20^\circ ,60^\circ ,100^\circ \}$
D. $\{20^\circ ,100^\circ ,140^\circ \}$
E. $\{100^\circ ,140^\circ ,180^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x$ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x &= -60^\circ +k.360^\circ \\ x &= -20^\circ +k.120^\circ \end{align}$
$k=1\to x=100^\circ $
HP = $\{20^\circ ,100^\circ ,140^\circ \}$
Jawaban: D
A. $\{60^\circ ,90^\circ ,180^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,180^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{30^\circ ,150^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x-45^\circ $ dan $g(x)=135^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +45^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= -135^\circ +k.360^\circ \\ 3x &= -135^\circ +45^\circ +k.360^\circ \\ 3x &= -90^\circ +k.360^\circ \\ x &= -30^\circ +k.120^\circ \end{align}$
$k=1\to x=90^\circ $
HP = $\{60^\circ ,90^\circ ,180^\circ \}$
Jawaban: A
A. $\{45^\circ ,135^\circ \}$
B. $\{90^\circ ,270^\circ \}$
C. $\{45^\circ ,315^\circ \}$
D. $\{45^\circ \}$
E. $\{45^\circ ,135^\circ ,225^\circ ,315^\circ \}$
Jawaban: D
A. $\{75^\circ ,300^\circ \}$
B. $\{75^\circ ,345^\circ \}$
C. $\{50^\circ ,250^\circ \}$
D. $\{65^\circ ,345^\circ \}$
E. $\{60^\circ ,250^\circ \}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 45^\circ +k.360^\circ \\ x &= 45^\circ +30^\circ +k.360^\circ \\ x &= 75^\circ +k.360^\circ \end{align}$
$k=0\to x=75^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= -45^\circ +k.360^\circ \\ x &= -45^\circ +30^\circ +k.360^\circ \\ x &= -15^\circ +k.360^\circ \end{align}$
$k=1\to x=345^\circ $
HP = $\{75^\circ ,345^\circ \}$
Jawaban: B
A. $\{30^\circ \}$
B. $\{30^\circ ,150^\circ \}$
C. $\{60^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{45^\circ ,145^\circ \}$
$x=30^\circ $ atau $x=150^\circ $
HP = $\{30^\circ ,150^\circ \}$
Jawaban: B
A. $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{\pi }{6} \right\}$
C. $\left\{ \frac{\pi }{3},\frac{\pi }{2} \right\}$
D. $\left\{ \frac{\pi }{3},\frac{5\pi }{6} \right\}$
E. $\left\{ \frac{2\pi }{3},\frac{5\pi }{6} \right\}$
$x=60^\circ =\frac{60^\circ }{180^\circ }\pi =\frac{\pi }{3}$ atau $x=120^\circ =\frac{120^\circ }{180^\circ }\pi =\frac{2\pi }{3}$
HP = $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
Jawaban: A
A. $\{30^\circ ,60^\circ ,180^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ \}$
C. $\{30^\circ ,180^\circ ,300^\circ \}$
D. $\{60^\circ ,120^\circ ,270^\circ \}$
E. $\{60^\circ ,180^\circ ,300^\circ \}$
$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ -x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 180^\circ -x+k.360^\circ \\ 2x+x &= 180^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
$k=2\to x=300^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ -x)+k.360^\circ \\ 2x &= -180^\circ +x+k.360^\circ \\ 2x-x &= -180^\circ +k.360^\circ \\ x &= -180^\circ +k.360^\circ \end{align}$
$k=1\to x=180^\circ $
HP = $\{60^\circ ,180^\circ ,300^\circ \}$
Jawaban: E
A. $\{70^\circ ,170^\circ ,210^\circ ,250^\circ \}$
B. $\{70^\circ ,190^\circ ,210^\circ ,250^\circ \}$
C. $\{50^\circ ,190^\circ ,250^\circ ,290^\circ \}$
D. $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
E. $\{50^\circ ,170^\circ ,250^\circ ,290^\circ \}$
$\begin{align}\sin (x-60^\circ ) &= \cos 2x \\ \sin (x-60^\circ ) &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=x-60^\circ $ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-60^\circ &= 90^\circ -2x+k.360^\circ \\ x+2x &= 90^\circ +60^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-60^\circ &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ x-60^\circ &= 90^\circ +2x+k.360^\circ \\ x-2x &= 90^\circ +60^\circ +k.360^\circ \\ -x &= 150^\circ +k.360^\circ \\ x &= -150^\circ -k.360^\circ \end{align}$
$k=-1\to x=210^\circ $
HP = $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
Jawaban: D
A. $\{15^\circ ,105^\circ ,195^\circ ,315^\circ \}$
B. $\{15^\circ ,195^\circ ,225^\circ ,315^\circ \}$
C. $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
D. $\{105^\circ ,195^\circ ,255^\circ ,315^\circ \}$
E. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=30^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x &= 30^\circ +k.180^\circ \\ x &= 15^\circ +k.90^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=105^\circ $
$k=2\to x=195^\circ $
$k=3\to x=285^\circ $
HP = $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
Jawaban: C
A. $x=45^\circ $ atau $x=135^\circ $
B. $x=-95^\circ $ atau $x=275^\circ $
C. $x=95^\circ $ atau $x=275^\circ $
D. $x=5^\circ $ atau $x=95^\circ $
E. $x=85^\circ $ atau $x=5^\circ $
$\cos (40^\circ +x)+\sin (40^\circ +x)=0$
$\begin{align}\cos (40^\circ +x) &= -\sin (40^\circ +x) \\ \cos (40^\circ +x) &= \cos (90^\circ +(40^\circ +x)) \\ \cos (40^\circ +x) &= \cos (130^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=40^\circ +x$ dan $g(x)=130^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= 130^\circ +x+k.360^\circ \\ x-x &= 130^\circ -40^\circ +k.360^\circ \\ 0 &= 90^\circ +k.360^\circ \end{align}$
(tidak ada penyelesaian)
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= -(130^\circ +x)+k.360^\circ \\ 40^\circ +x &= -130^\circ -x+k.360^\circ \\ x+x &= -130^\circ -40^\circ +k.360^\circ \\ 2x &= -170^\circ +k.360^\circ \\ x &= -85^\circ +k.180^\circ \end{align}$
$k=1\to x=95^\circ $
$k=2\to x=275^\circ $
Jadi, $x=95^\circ $ atau $x=275^\circ $
Jawaban: C
A. $\{30^\circ ,150^\circ \}$
B. $\{45^\circ ,165^\circ \}$
C. $\{15^\circ ,150^\circ \}$
D. $\{30^\circ ,60^\circ \}$
E. $\{120^\circ ,135^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 30^\circ +k.360^\circ \\ 2x &= 30^\circ -60^\circ +k.360^\circ \\ 2x &= -30^\circ +k.360^\circ \\ x &= -15^\circ +k.180^\circ \end{align}$
$k=1\to x=165^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+60^\circ &= (180^\circ -30^\circ )+k.360^\circ \\ 2x+60^\circ &= 150^\circ +k.360^\circ \\ 2x &= 150^\circ -60^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
HP = $\{45^\circ ,165^\circ \}$
Jawaban: B
A. $\{60^\circ ,135^\circ \}$
B. $\{60^\circ ,195^\circ \}$
C. $\{135^\circ ,195^\circ \}$
D. $\{135^\circ ,315^\circ \}$
E. $\{195^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-75^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-75^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +75^\circ +k.360^\circ \\ x &= 135^\circ +k.360^\circ \end{align}$
$k=0\to x=135^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-75^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-75^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +75^\circ +k.360^\circ \\ x &= 195^\circ +k.360^\circ \end{align}$
$k=0\to x=195^\circ $
HP = $\{135^\circ ,195^\circ \}$
Jawaban: C
A. $\{60^\circ ,180^\circ ,240^\circ ,360^\circ \}$
B. $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
C. $\{60^\circ ,150^\circ ,270^\circ ,330^\circ \}$
D. $\{90^\circ ,150^\circ ,210^\circ ,360^\circ \}$
E. $\{90^\circ ,120^\circ ,270^\circ ,330^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=150^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 150^\circ +k.180^\circ \\ 2x &= 150^\circ +30^\circ +k.180^\circ \\ 2x &= 180^\circ +k.180^\circ \\ x &= 90^\circ +k.90^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=180^\circ $
$k=2\to x=270^\circ $
$k=3\to x=360^\circ $
HP = $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
Jawaban: B
A. $\{45^\circ ,135^\circ ,195^\circ ,225^\circ \}$
B. $\{15^\circ ,75^\circ ,195^\circ ,245^\circ \}$
C. $\{45^\circ ,75^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
E. $\{15^\circ ,45^\circ ,135^\circ ,3155^\circ \}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+30^\circ &= 60^\circ +k.360^\circ \\ 2x &= 60^\circ -30^\circ +k.360^\circ \\ 2x &= 30^\circ +k.360^\circ \\ x &= 15^\circ +k.180^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=195^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ 2x+30^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -30^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
Jawaban: D
A. $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
B. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
C. $\{75^\circ ,105^\circ ,165^\circ ,205^\circ \}$
D. $\{75^\circ ,165^\circ ,225^\circ ,315^\circ \}$
E. $\{75^\circ ,165^\circ ,255^\circ ,315^\circ \}$
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=120^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 120^\circ +k.180^\circ \\ 2x &= 120^\circ +30^\circ +k.180^\circ \\ 2x &= 150^\circ +k.180^\circ \\ x &= 75^\circ +k.90^\circ \end{align}$
$k=0\to x=75^\circ $
$k=1\to x=165^\circ $
$k=2\to x=255^\circ $
$k=3\to x=345^\circ $
HP = $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
Jawaban: A
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Soal Persamaan Trigonometri Dasar No. 1
Himpunan penyelesaian dari persamaan: $\sin (3x-15^\circ )=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah …A. $\{20^\circ ,140^\circ \}$
B. $\{50^\circ ,170^\circ \}$
C. $\{20^\circ ,50^\circ ,140^\circ \}$
D. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
E. $\{20^\circ ,50^\circ ,140^\circ ,170^\circ ,200^\circ \}$
Penyelesaian: Lihat/Tutup
$\sin (3x-15^\circ )=\frac{1}{2}\sqrt{2}$$\sin (3x-15^\circ )=\sin 45^\circ $
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x-15^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-15^\circ &= 45^\circ +k.360^\circ \\ 3x &= 45^\circ +15^\circ +k.360^\circ \\ 3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x-15^\circ &= (180^\circ -45^\circ )+k.360^\circ \\ 3x-15^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +15^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
HP = $\{20^\circ ,50^\circ ,140^\circ ,170^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 2
Nilai $x$ yang memenuhi persamaan $2\sin 2x+2\sin x=0$ dan $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,60^\circ ,90^\circ \}$
B. $\{60^\circ ,90^\circ ,120^\circ \}$
C. $\{90^\circ ,120^\circ ,150^\circ \}$
D. $\{120^\circ ,150^\circ ,240^\circ \}$
E. $\{120^\circ ,180^\circ ,240^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\sin 2x+2\sin x &= 0 \\ \sin 2x+\sin x &= 0 \\ \sin 2x &= -\sin x \\ \sin 2x &= \sin (-x) \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x$ dan $g(x)=-x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= -x+k.360^\circ \\ 3x &= k.360^\circ \\ x &= k.120^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=120^\circ $
$k=2\to x=240^\circ $
$k=3\to x=360^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x &= 180^\circ +x+k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
HP = $\{0^\circ ,120^\circ ,180^\circ ,240^\circ ,360^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 3
Nilai $x$ yang memenuhi $\tan (3x+60^\circ )=\sqrt{3}$ adalah ….A. $90^\circ $
B. $110^\circ $
C. $120^\circ $
D. $130^\circ $
E. $230^\circ $
Penyelesaian: Lihat/Tutup
$\tan (3x+60^\circ )=\sqrt{3}$$\tan (3x+60^\circ )=\tan 60^\circ $
Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=3x+60^\circ $ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 3x+60^\circ &= 60^\circ +k.180^\circ \\ 3x &= 60^\circ -60^\circ +k.180^\circ \\ 3x &= k.180^\circ \\ x &= k.60^\circ \end{align}$
$k=0\to x=0^\circ $
$k=1\to x=60^\circ $
$k=2\to x=120^\circ $
$k=3\to x=180^\circ $
$k=4\to x=240^\circ $
$k=5\to x=300^\circ $
$k=6\to x=360^\circ $
HP = $\{0^\circ ,60^\circ ,120^\circ ,180^\circ ,240^\circ ,300^\circ ,360^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 4
Himpunan penyelesaian $\sin 4x-\cos 2x=0$ untuk $0^\circ < x < 360^\circ $ adalah ….A. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ \}$
B. $\{135^\circ ,195^\circ ,225^\circ ,255^\circ \}$
C. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,75^\circ ,195^\circ ,255^\circ \}$
E. $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $\cos \alpha =\sin (90^\circ -\alpha )$.$\begin{align}\sin 4x-\cos 2x &= 0 \\ \sin 4x &= \cos 2x \\ \sin 4x &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=4x$ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}4x &= 90^\circ -2x+k.360^\circ \\ 4x+2x &= 90^\circ +k.360^\circ \\ 6x &= 90^\circ +k.360^\circ \\ x &= 15^\circ +k.60^\circ \\ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=75^\circ $
$k=2\to x=135^\circ $
$k=3\to x=195^\circ $
$k=4\to x=255^\circ $
$k=5\to x=315^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}4x &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ 4x &= 90^\circ +2x+k.360^\circ \\ 4x-2x &= 90^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,75^\circ ,135^\circ ,195^\circ ,225^\circ ,255^\circ ,315^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 5
Perbandingan sudut A terkecil terhadap sudut A terbesar yang memenuhi persamaan $2\cos A+1=0$ untuk $0\le A\le 2\pi $ adalah ….A. 1 : 1
B. 1 : 2
C. 2 : 3
D. 3 : 4
E. 4 : 5
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos A+1 &= 0 \\ 2\cos A &= -1 \\ \cos A &= -\frac{1}{2} \end{align}$$A=120^\circ $ atau $A=240^\circ $
Sudut A terkecil : sudut A terbesar
= $120^\circ :240^\circ $
= 1 : 2
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 6
Himpunan penyelesaian persamaan $\cos 2x-\sin x=0$ untuk $0\le x\le 2\pi $ adalah ….A. $\left\{ \frac{\pi }{2},\frac{\pi }{3},\frac{\pi }{6} \right\}$
B. $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
C. $\left\{ \frac{\pi }{2},\frac{\pi }{6},\frac{7\pi }{6} \right\}$
D. $\left\{ \frac{7\pi }{6},\frac{4\pi }{3},\frac{11\pi }{6} \right\}$
E. $\left\{ \frac{4\pi }{3},\frac{11\pi }{6},2\pi \right\}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $\sin \alpha =\cos (90^\circ -\alpha )$.$\begin{align}\cos 2x-\sin x &= 0 \\ \cos 2x &= \sin x \\ \cos 2x &= \cos (90^\circ -x) \end{align}$
Persamaan trigonometri dasar,$\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=90^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 90^\circ -x+k.360^\circ \\ 2x+x &= 90^\circ +k.360^\circ \\ 3x &= 90^\circ +k.360^\circ \\ x &= 30^\circ +k.120^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=150^\circ $
$k=2\to x=270^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(90^\circ -x)+k.360^\circ \\ 2x &= -90^\circ +x+k.360^\circ \\ 2x-x &= -90^\circ +k.360^\circ \\ x &= -90^\circ +k.360^\circ \end{align}$
$k=1\to x=270^\circ $
HP = $\left\{ 30^\circ ,150^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{30^\circ }{180^\circ }\pi ,\frac{150^\circ }{180^\circ }\pi ,\frac{270^\circ }{180^\circ }\pi \right\}$ = $\left\{ \frac{\pi }{6},\frac{5\pi }{6},\frac{3\pi }{2} \right\}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 7
Himpunan penyelesaian persamaan $\cos 2x+\cos x=0$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{45^\circ ,120^\circ \}$
B. $\{45^\circ ,135^\circ \}$
C. $\{60^\circ ,135^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,180^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan Trigonometri Sudut Berelasi, $-\cos \alpha =\cos (180^\circ -\alpha )$.$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= (180^\circ +x)+k.360^\circ \\ 2x-x &= 180^\circ +k.360^\circ \\ x &= 180^\circ +k.360^\circ \end{align}$
$k=0\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ +x)+k.360^\circ \\ 2x &= -180^\circ -x+k.360^\circ \\ 2x+x &= -180^\circ +k.360^\circ \\ 3x &= -180^\circ +k.360^\circ \\ x &= -60^\circ +k.120^\circ \end{align}$
$k=1\to x=60^\circ $
HP = $\{60^\circ ,180^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 8
Himpunan penyelesaian persamaan $\cos (2x+60^\circ )=-\frac{1}{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
B. $\{60^\circ ,120^\circ ,210^\circ ,270^\circ \}$
C. $\{30^\circ ,120^\circ ,210^\circ ,300^\circ \}$
D. $\{60^\circ ,90^\circ ,240^\circ ,270^\circ \}$
E. $\{30^\circ ,90^\circ ,240^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (2x+60^\circ ) &= -\frac{1}{2} \\ \cos (2x+60^\circ ) &= \cos 120^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=120^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -60^\circ +k.360^\circ \\ 2x &= 60^\circ +k.360^\circ \\ x &= 30^\circ +k.180^\circ \end{align}$
$k=0\to x=30^\circ $
$k=1\to x=210^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= -120^\circ +k.360^\circ \\ 2x &= -120^\circ -60^\circ +k.360^\circ \\ 2x &= -180^\circ +k.360^\circ \\ x &= -90^\circ -k.180^\circ \end{align}$
$k=-1\to x=90^\circ $
$k=-2\to x=270^\circ $
HP = $\{30^\circ ,90^\circ ,210^\circ ,270^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 9
Himpunan penyelesaian persamaan $1+2\sin x=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{120^\circ ,180^\circ \}$
B. $\{150^\circ ,260^\circ \}$
C. $\{180^\circ ,270^\circ \}$
D. $\{200^\circ ,320^\circ \}$
E. $\{210^\circ ,330^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}1+2\sin x &= 0 \\ 2\sin x &= -1 \\ \sin x &= -\frac{1}{2} \end{align}$$x=210^\circ $ atau $x=330^\circ $
HP = $\{210^\circ ,330^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 10
Himpunan penyelesaian persamaan $2\cos x=1$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,120^\circ \}$
B. $\{30^\circ ,300^\circ \}$
C. $\{30^\circ ,330^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{60^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos x &= 1 \\ \cos x &= \frac{1}{2} \end{align}$$x=60^\circ $ atau $x=300^\circ $
HP = $\{60^\circ ,300^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 11
Himpunan penyelesaian dari $\sin 3x=\frac{1}{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
B. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
C. $\{10^\circ ,50^\circ ,160^\circ ,170^\circ ,250^\circ ,290^\circ \}$
D. $\{10^\circ ,60^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
E. $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,340^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin 3x &= \frac{1}{2} \\ \sin 3x &= \sin 30^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=3x$ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 30^\circ +k.360^\circ \\ x &= 10^\circ +k.120^\circ \end{align}$
$k=0\to x=10^\circ $
$k=1\to x=130^\circ $
$k=2\to x=250^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}3x &= 180^\circ -30^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
HP = $\{10^\circ ,50^\circ ,130^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 12
Himpunan penyelesaian dari $\cos 5x=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{10^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
B. $\{9^\circ ,63^\circ ,91^\circ ,135^\circ \}$
C. $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
D. $\{9^\circ ,73^\circ ,81^\circ ,153^\circ \}$
E. $\{9^\circ ,83^\circ ,135^\circ ,153^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 5x &= \frac{1}{2}\sqrt{2} \\ \cos 5x &= \cos 45^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=5x$ dan $\cos g(x)$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}5x &= 45^\circ +k.360^\circ \\ x &= 9^\circ +k.72^\circ \end{align}$
$k=0\to x=9^\circ $
$k=1\to x=81^\circ $
$k=2\to x=153^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}5x &= -45^\circ +k.360^\circ \\ x &= -9^\circ +k.72^\circ \end{align}$
$k=1\to x=63^\circ $
$k=2\to x=135^\circ $
HP = $\{9^\circ ,63^\circ ,81^\circ ,135^\circ ,153^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 13
Himpunan penyelesaian dari persamaan $\tan 4x=\sqrt{3}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{15^\circ ,60^\circ ,145^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
B. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,185^\circ ,240^\circ ,285^\circ ,330^\circ \}$
C. $\{25^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
D. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
E. $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,340^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\tan 4x &= \sqrt{3} \\ \tan 4x &= \tan 60^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=4x$ dan $g(x)=60^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 4x &= 60^\circ +k.180^\circ \\ x &= 15^\circ +k.45^\circ \end{align}$
$x=0\to x=15^\circ $
$x=1\to x=60^\circ $
$x=2\to x=105^\circ $
$x=3\to x=150^\circ $
$x=4\to x=195^\circ $
$x=5\to x=240^\circ $
$x=6\to x=285^\circ $
$x=7\to x=330^\circ $
HP = $\{15^\circ ,60^\circ ,105^\circ ,150^\circ ,195^\circ ,240^\circ ,285^\circ ,330^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 14
Jika $\tan 2x=\tan \frac{\pi }{3}$, maka harga $x$ adalah ….A. $\left\{ \frac{\pi }{4},\frac{5\pi }{4},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{5\pi }{3},\frac{2\pi }{3},\frac{4\pi }{3} \right\}$
C. $x=\frac{\pi }{2}+\frac{1}{2}k\pi $
D. $\left\{ 0,\frac{\pi }{2},\pi \right\}$
E. $x=\frac{\pi }{6}+\frac{1}{2}k\pi $
Penyelesaian: Lihat/Tutup
$\tan 2x=\tan \frac{\pi }{3}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=\frac{\pi }{3}$ maka:
$\begin{align}f(x) &= g(x)+k.\pi \\ 2x &= \frac{\pi }{3}+k.\pi \\ x &= \frac{\pi }{6}+\frac{1}{2}k\pi \end{align}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 15
Himpunan penyelesaian dari $\sin (x-30^\circ )=\frac{1}{2}\sqrt{3}$ untuk $0^\circ \le x\le 720^\circ $ adalah ….A. $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ ,300^\circ \}$
C. $\{60^\circ ,90^\circ ,300^\circ ,450^\circ ,510^\circ \}$
D. $\{90^\circ ,150^\circ ,300^\circ ,450^\circ \}$
E. $\{30^\circ ,60^\circ ,90^\circ ,150^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin (x-30^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (x-30^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +30^\circ +k.360^\circ \\ x &= 90^\circ +k.360^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=450^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-30^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +30^\circ +k.360^\circ \\ x &= 150^\circ +k.360^\circ \end{align}$
$k=0\to x=150^\circ $
$k=1\to x=510^\circ $
HP = $\{90^\circ ,150^\circ ,450^\circ ,510^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 16
Himpunan penyelesaian dari persamaan $2\cos 3x=1$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{0^\circ ,20^\circ ,60^\circ \}$
B. $\{0^\circ ,20^\circ ,100^\circ \}$
C. $\{20^\circ ,60^\circ ,100^\circ \}$
D. $\{20^\circ ,100^\circ ,140^\circ \}$
E. $\{100^\circ ,140^\circ ,180^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2\cos 3x &= 1 \\ \cos 3x &= \frac{1}{2} \\ \cos 3x &= \cos 60^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x$ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x &= 60^\circ +k.360^\circ \\ x &= 20^\circ +k.120^\circ \end{align}$
$k=0\to x=20^\circ $
$k=1\to x=140^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x &= -60^\circ +k.360^\circ \\ x &= -20^\circ +k.120^\circ \end{align}$
$k=1\to x=100^\circ $
HP = $\{20^\circ ,100^\circ ,140^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 17
Himpunan penyelesaian persamaan $\cos (3x-45^\circ )=-\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{60^\circ ,90^\circ ,180^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,180^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{30^\circ ,150^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (3x-45^\circ ) &= -\frac{1}{2}\sqrt{2} \\ \cos (3x-45^\circ ) &= \cos 135^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=3x-45^\circ $ dan $g(x)=135^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= 135^\circ +k.360^\circ \\ 3x &= 135^\circ +45^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}3x-45^\circ &= -135^\circ +k.360^\circ \\ 3x &= -135^\circ +45^\circ +k.360^\circ \\ 3x &= -90^\circ +k.360^\circ \\ x &= -30^\circ +k.120^\circ \end{align}$
$k=1\to x=90^\circ $
HP = $\{60^\circ ,90^\circ ,180^\circ \}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 18
Diketahui persamaan $\sqrt{2}\cos x-1=0$, $0^\circ \le x\le 180^\circ $. Himpunan penyelesaian persamaan tersebut adalah ….A. $\{45^\circ ,135^\circ \}$
B. $\{90^\circ ,270^\circ \}$
C. $\{45^\circ ,315^\circ \}$
D. $\{45^\circ \}$
E. $\{45^\circ ,135^\circ ,225^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{2}\cos x-1 &= 0 \\ \sqrt{2}\cos x &= 1 \\ \cos x &= \frac{1}{\sqrt{2}} \\ \cos x &= \frac{1}{2}\sqrt{2} \\ x &= 45^\circ \end{align}$Jawaban: D
Soal Persamaan Trigonometri Dasar No. 19
Himpunan penyelesaian dari $\cos (x-30^\circ )=\frac{1}{2}\sqrt{2}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{75^\circ ,300^\circ \}$
B. $\{75^\circ ,345^\circ \}$
C. $\{50^\circ ,250^\circ \}$
D. $\{65^\circ ,345^\circ \}$
E. $\{60^\circ ,250^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos (x-30^\circ ) &= \frac{1}{2}\sqrt{2} \\ \cos (x-30^\circ ) &= \cos 45^\circ \end{align}$Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=x-30^\circ $ dan $g(x)=45^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= 45^\circ +k.360^\circ \\ x &= 45^\circ +30^\circ +k.360^\circ \\ x &= 75^\circ +k.360^\circ \end{align}$
$k=0\to x=75^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}x-30^\circ &= -45^\circ +k.360^\circ \\ x &= -45^\circ +30^\circ +k.360^\circ \\ x &= -15^\circ +k.360^\circ \end{align}$
$k=1\to x=345^\circ $
HP = $\{75^\circ ,345^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 20
Untuk $0^\circ \le x\le 180^\circ $, himpunan penyelesaian persamaan trigonometri $4\sin x-2=0$ adalah ….A. $\{30^\circ \}$
B. $\{30^\circ ,150^\circ \}$
C. $\{60^\circ \}$
D. $\{60^\circ ,120^\circ \}$
E. $\{45^\circ ,145^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}4\sin x-2 &= 0 \\ 4\sin x &= 2 \\ \sin x &= \frac{2}{4} \\ \sin x &= \frac{1}{2} \end{align}$$x=30^\circ $ atau $x=150^\circ $
HP = $\{30^\circ ,150^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 21
Himpunan penyelesaian dari persamaan $\sin x=\frac{1}{2}\sqrt{3}$ untuk $0\le x\le 2\pi $ adalah ….A. $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
B. $\left\{ \frac{\pi }{3},\frac{\pi }{6} \right\}$
C. $\left\{ \frac{\pi }{3},\frac{\pi }{2} \right\}$
D. $\left\{ \frac{\pi }{3},\frac{5\pi }{6} \right\}$
E. $\left\{ \frac{2\pi }{3},\frac{5\pi }{6} \right\}$
Penyelesaian: Lihat/Tutup
$\sin x=\frac{1}{2}\sqrt{3}$$x=60^\circ =\frac{60^\circ }{180^\circ }\pi =\frac{\pi }{3}$ atau $x=120^\circ =\frac{120^\circ }{180^\circ }\pi =\frac{2\pi }{3}$
HP = $\left\{ \frac{\pi }{3},\frac{2\pi }{3} \right\}$
Jawaban: A
Soal Persamaan Trigonometri Dasar No. 22
Himpunan penyelesaian dari persamaan trigonometri $\cos 2x+\cos x=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,60^\circ ,180^\circ \}$
B. $\{30^\circ ,90^\circ ,150^\circ \}$
C. $\{30^\circ ,180^\circ ,300^\circ \}$
D. $\{60^\circ ,120^\circ ,270^\circ \}$
E. $\{60^\circ ,180^\circ ,300^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $-\cos \alpha =\cos (180^\circ -\alpha )$.$\begin{align}\cos 2x+\cos x &= 0 \\ \cos 2x &= -\cos x \\ \cos 2x &= \cos (180^\circ -x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=2x$ dan $g(x)=180^\circ -x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x &= 180^\circ -x+k.360^\circ \\ 2x+x &= 180^\circ +k.360^\circ \\ 3x &= 180^\circ +k.360^\circ \\ x &= 60^\circ +k.120^\circ \end{align}$
$k=0\to x=60^\circ $
$k=1\to x=180^\circ $
$k=2\to x=300^\circ $
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}2x &= -(180^\circ -x)+k.360^\circ \\ 2x &= -180^\circ +x+k.360^\circ \\ 2x-x &= -180^\circ +k.360^\circ \\ x &= -180^\circ +k.360^\circ \end{align}$
$k=1\to x=180^\circ $
HP = $\{60^\circ ,180^\circ ,300^\circ \}$
Jawaban: E
Soal Persamaan Trigonometri Dasar No. 23
Himpunan penyelesaian dari persamaan $\sin (x-60^\circ )=\cos 2x$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{70^\circ ,170^\circ ,210^\circ ,250^\circ \}$
B. $\{70^\circ ,190^\circ ,210^\circ ,250^\circ \}$
C. $\{50^\circ ,190^\circ ,250^\circ ,290^\circ \}$
D. $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
E. $\{50^\circ ,170^\circ ,250^\circ ,290^\circ \}$
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $\sin (90^\circ -\alpha )=\cos \alpha $$\begin{align}\sin (x-60^\circ ) &= \cos 2x \\ \sin (x-60^\circ ) &= \sin (90^\circ -2x) \end{align}$
Persamaan trigonometri dasar, $\sin f(x)=x-60^\circ $ dan $g(x)=90^\circ -2x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-60^\circ &= 90^\circ -2x+k.360^\circ \\ x+2x &= 90^\circ +60^\circ +k.360^\circ \\ 3x &= 150^\circ +k.360^\circ \\ x &= 50^\circ +k.120^\circ \end{align}$
$k=0\to x=50^\circ $
$k=1\to x=170^\circ $
$k=2\to x=290^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-60^\circ &= (180^\circ -(90^\circ -2x))+k.360^\circ \\ x-60^\circ &= 90^\circ +2x+k.360^\circ \\ x-2x &= 90^\circ +60^\circ +k.360^\circ \\ -x &= 150^\circ +k.360^\circ \\ x &= -150^\circ -k.360^\circ \end{align}$
$k=-1\to x=210^\circ $
HP = $\{50^\circ ,170^\circ ,210^\circ ,290^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 24
Himpunan penyelesaian dari persamaan $\sqrt{6}\tan 2x-\sqrt{2}=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{15^\circ ,105^\circ ,195^\circ ,315^\circ \}$
B. $\{15^\circ ,195^\circ ,225^\circ ,315^\circ \}$
C. $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
D. $\{105^\circ ,195^\circ ,255^\circ ,315^\circ \}$
E. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{6}\tan 2x-\sqrt{2} &= 0 \\ \sqrt{6}\tan 2x &= \sqrt{2} \\ \tan 2x &= \frac{\sqrt{2}}{\sqrt{6}} \\ \tan 2x &= \frac{1}{\sqrt{3}} \\ \tan 2x &= \frac{1}{3}\sqrt{3} \\ \tan 2x &= \tan 30^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x$ dan $g(x)=30^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x &= 30^\circ +k.180^\circ \\ x &= 15^\circ +k.90^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=105^\circ $
$k=2\to x=195^\circ $
$k=3\to x=285^\circ $
HP = $\{15^\circ ,105^\circ ,195^\circ ,285^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 25
Penyelesaian dari $\cos (40^\circ +x)+\sin (40^\circ +x)=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $x=45^\circ $ atau $x=135^\circ $
B. $x=-95^\circ $ atau $x=275^\circ $
C. $x=95^\circ $ atau $x=275^\circ $
D. $x=5^\circ $ atau $x=95^\circ $
E. $x=85^\circ $ atau $x=5^\circ $
Penyelesaian: Lihat/Tutup
Perbandingan trigonometri sudut berelasi, $-\sin \alpha =\cos (90^\circ +\alpha )$ maka:$\cos (40^\circ +x)+\sin (40^\circ +x)=0$
$\begin{align}\cos (40^\circ +x) &= -\sin (40^\circ +x) \\ \cos (40^\circ +x) &= \cos (90^\circ +(40^\circ +x)) \\ \cos (40^\circ +x) &= \cos (130^\circ +x) \end{align}$
Persamaan trigonometri dasar, $\cos f(x)=\cos g(x)$ dengan $f(x)=40^\circ +x$ dan $g(x)=130^\circ +x$ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= 130^\circ +x+k.360^\circ \\ x-x &= 130^\circ -40^\circ +k.360^\circ \\ 0 &= 90^\circ +k.360^\circ \end{align}$
(tidak ada penyelesaian)
2) $f(x)=-g(x)+k.360^\circ $
$\begin{align}40^\circ +x &= -(130^\circ +x)+k.360^\circ \\ 40^\circ +x &= -130^\circ -x+k.360^\circ \\ x+x &= -130^\circ -40^\circ +k.360^\circ \\ 2x &= -170^\circ +k.360^\circ \\ x &= -85^\circ +k.180^\circ \end{align}$
$k=1\to x=95^\circ $
$k=2\to x=275^\circ $
Jadi, $x=95^\circ $ atau $x=275^\circ $
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 26
Himpunan penyelesaian dari $6\sin (2x+60^\circ )=3$ untuk $0^\circ \le x\le 180^\circ $ adalah ….A. $\{30^\circ ,150^\circ \}$
B. $\{45^\circ ,165^\circ \}$
C. $\{15^\circ ,150^\circ \}$
D. $\{30^\circ ,60^\circ \}$
E. $\{120^\circ ,135^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}6\sin (2x+60^\circ ) &= 3 \\ \sin (2x+60^\circ ) &= \frac{3}{6} \\ \sin (2x+60^\circ ) &= \frac{1}{2} \\ \sin (2x+60^\circ ) &= \sin 30^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+60^\circ $ dan $g(x)=30^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+60^\circ &= 30^\circ +k.360^\circ \\ 2x &= 30^\circ -60^\circ +k.360^\circ \\ 2x &= -30^\circ +k.360^\circ \\ x &= -15^\circ +k.180^\circ \end{align}$
$k=1\to x=165^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+60^\circ &= (180^\circ -30^\circ )+k.360^\circ \\ 2x+60^\circ &= 150^\circ +k.360^\circ \\ 2x &= 150^\circ -60^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
HP = $\{45^\circ ,165^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 27
Himpunan penyelesaian dari $\sin (x-75^\circ )=\frac{1}{2}\sqrt{3}$ dengan $0^\circ \le x\le 360^\circ $ adalah ….A. $\{60^\circ ,135^\circ \}$
B. $\{60^\circ ,195^\circ \}$
C. $\{135^\circ ,195^\circ \}$
D. $\{135^\circ ,315^\circ \}$
E. $\{195^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin (x-75^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (x-75^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=x-75^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}x-75^\circ &= 60^\circ +k.360^\circ \\ x &= 60^\circ +75^\circ +k.360^\circ \\ x &= 135^\circ +k.360^\circ \end{align}$
$k=0\to x=135^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}x-75^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ x-75^\circ &= 120^\circ +k.360^\circ \\ x &= 120^\circ +75^\circ +k.360^\circ \\ x &= 195^\circ +k.360^\circ \end{align}$
$k=0\to x=195^\circ $
HP = $\{135^\circ ,195^\circ \}$
Jawaban: C
Soal Persamaan Trigonometri Dasar No. 28
Nilai $x$ yang memenuhi persamaan trigonometri $\sqrt{3}+3\tan (2x-30^\circ )=0$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{60^\circ ,180^\circ ,240^\circ ,360^\circ \}$
B. $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
C. $\{60^\circ ,150^\circ ,270^\circ ,330^\circ \}$
D. $\{90^\circ ,150^\circ ,210^\circ ,360^\circ \}$
E. $\{90^\circ ,120^\circ ,270^\circ ,330^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sqrt{3}+3\tan (2x-30^\circ ) &= 0 \\ 3\tan (2x-30^\circ ) &= -\sqrt{3}\\ \tan (2x-30^\circ ) &= -\frac{1}{3}\sqrt{3} \\ \tan (2x-30^\circ ) &= \tan 150^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=150^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 150^\circ +k.180^\circ \\ 2x &= 150^\circ +30^\circ +k.180^\circ \\ 2x &= 180^\circ +k.180^\circ \\ x &= 90^\circ +k.90^\circ \end{align}$
$k=0\to x=90^\circ $
$k=1\to x=180^\circ $
$k=2\to x=270^\circ $
$k=3\to x=360^\circ $
HP = $\{90^\circ ,180^\circ ,270^\circ ,360^\circ \}$
Jawaban: B
Soal Persamaan Trigonometri Dasar No. 29
Nilai $x$ yang memenuhi persamaan trigonometri $2+\sqrt{12}\sin (2x+30^\circ )=5$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{45^\circ ,135^\circ ,195^\circ ,225^\circ \}$
B. $\{15^\circ ,75^\circ ,195^\circ ,245^\circ \}$
C. $\{45^\circ ,75^\circ ,195^\circ ,225^\circ \}$
D. $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
E. $\{15^\circ ,45^\circ ,135^\circ ,3155^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}2+\sqrt{12}\sin (2x+30^\circ ) &= 5 \\ \sqrt{12}\sin (2x+30^\circ ) &= 5-2 \\ 2\sqrt{3}\sin (2x+30^\circ ) &= 3 \\ \sin (2x+30^\circ ) &= \frac{3}{2\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ \sin (2x+30^\circ ) &= \frac{1}{2}\sqrt{3} \\ \sin (2x+30^\circ ) &= \sin 60^\circ \end{align}$Persamaan trigonometri dasar, $\sin f(x)=\sin g(x)$ dengan $f(x)=2x+30^\circ $ dan $g(x)=60^\circ $ maka:
1) $f(x)=g(x)+k.360^\circ $
$\begin{align}2x+30^\circ &= 60^\circ +k.360^\circ \\ 2x &= 60^\circ -30^\circ +k.360^\circ \\ 2x &= 30^\circ +k.360^\circ \\ x &= 15^\circ +k.180^\circ \end{align}$
$k=0\to x=15^\circ $
$k=1\to x=195^\circ $
2) $f(x)=(180^\circ -g(x))+k.360^\circ $
$\begin{align}2x+30^\circ &= (180^\circ -60^\circ )+k.360^\circ \\ 2x+30^\circ &= 120^\circ +k.360^\circ \\ 2x &= 120^\circ -30^\circ +k.360^\circ \\ 2x &= 90^\circ +k.360^\circ \\ x &= 45^\circ +k.180^\circ \end{align}$
$k=0\to x=45^\circ $
$k=1\to x=225^\circ $
HP = $\{15^\circ ,45^\circ ,195^\circ ,225^\circ \}$
Jawaban: D
Soal Persamaan Trigonometri Dasar No. 30
Himpunan penyelesaian dari persamaan $\tan (2x-30^\circ )=-\sqrt{3}$ untuk $0^\circ \le x\le 360^\circ $ adalah ….A. $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
B. $\{105^\circ ,185^\circ ,255^\circ ,315^\circ \}$
C. $\{75^\circ ,105^\circ ,165^\circ ,205^\circ \}$
D. $\{75^\circ ,165^\circ ,225^\circ ,315^\circ \}$
E. $\{75^\circ ,165^\circ ,255^\circ ,315^\circ \}$
Penyelesaian: Lihat/Tutup
$\begin{align}\tan (2x-30^\circ ) &= -\sqrt{3} \\ \tan (2x-30^\circ ) &= \tan 120^\circ \end{align}$Persamaan trigonometri dasar, $\tan f(x)=\tan g(x)$ dengan $f(x)=2x-30^\circ $ dan $g(x)=120^\circ $ maka:
$\begin{align}\color{blue}f(x) &\color{blue}= g(x)+k.180^\circ \\ 2x-30^\circ &= 120^\circ +k.180^\circ \\ 2x &= 120^\circ +30^\circ +k.180^\circ \\ 2x &= 150^\circ +k.180^\circ \\ x &= 75^\circ +k.90^\circ \end{align}$
$k=0\to x=75^\circ $
$k=1\to x=165^\circ $
$k=2\to x=255^\circ $
$k=3\to x=345^\circ $
HP = $\{75^\circ ,165^\circ ,255^\circ ,345^\circ \}$
Jawaban: A
Semoga postingan: Soal Persamaan Trigonometri Dasar dan Pembahasan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Post a Comment for "Soal Persamaan Trigonometri Dasar dan Pembahasan"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.