Soal Trigonometri Sudut Ganda dan Sudut Pertengahan dan Pembahasan
Hallo...! Pengunjung setia Catatan Matematika, kali ini Bang RP (Reikson Panjaitan, S.Pd) berbagi Kumpulan Soal Trigonometri Sudut Rangkap dan Sudut Pertengahan berserta pembahasannya. Ayo... manfaatkan website Catatan Matematika ini untuk belajar matematika secara online.
A. $\frac{17}{25}$
B. 1
C. $\frac{6}{5}$
D. $\frac{31}{25}$
E. $\frac{7}{5}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{3^2+4^2} \\ mi &= 5 \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{3}{5}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{4}{5}$
maka:
$\sin 2\alpha +\cos 2\alpha $
= $2\sin \alpha \cos \alpha +2{{\cos }^{2}}\alpha -1$
= $2.\frac{3}{5}.\frac{4}{5}+2{\left( \frac{4}{5} \right)^2}-1$
= $\frac{24}{25}+\frac{32}{25}-\frac{25}{25}$
= $\frac{31}{25}$
Jawaban: D
A. $\frac{12}{25}$
B. $\frac{7}{25}$
C. $\frac{3}{25}$
D. $-\frac{7}{25}$
E. $-\frac{3}{25}$
$\begin{align}\cos 2A &= 1-2{\sin }^2A \\ &= 1-2{\left( \frac{4}{5} \right)^2} \\ &= 1-\frac{32}{25} \\ \cos 2A &= -\frac{7}{25} \end{align}$
Jawaban: D
A. $1-2{\cos }^2p$
B. $2{\sin }^2p-1$
C. $1-2{\sin }^2p$
D. $2(1-2{\sin }^2p)$
E. $2{\cos }^2p-1$
Jawaban: D
A. $\frac{1}{3}\sqrt{3}$
B. $\frac{1}{2}\sqrt{2}$
C. $\frac{1}{3}\sqrt{6}$
D. $\frac{2}{3}\sqrt{6}$
E. $\frac{2}{5}\sqrt{5}$
$\begin{align}\cos 2A &= \frac{1}{3} \\ 2{\cos }^2A-1 &= \frac{1}{3} \\ 2{\cos }^2A &= \frac{1}{3}+1 \\ 2{\cos }^2A &= \frac{4}{3} \\ {\cos }^2A &= \frac{2}{3} \\ \cos A &= \frac{\sqrt{2}}{\sqrt{3}}= \frac{sa}{mi} \end{align}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \\ de &= 1 \end{align}$
$\tan A=\frac{de}{sa}\Leftrightarrow \tan A=\frac{1}{\sqrt{2}}=\frac{1}{2}\sqrt{2}$
Cara 2. Menggunakan rumus trigonometri pertengahan sudut: $\tan \frac{1}{2}\alpha =\pm \sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }}$ maka:
$\begin{align}\tan A &= \tan \frac{1}{2}(2A) \\ &= \sqrt{\frac{1-\cos 2A}{1+\cos 2A}} \\ &= \sqrt{\frac{1-\frac{1}{3}}{1+\frac{1}{3}}} \\ &= \sqrt{\frac{\frac{2}{3}}{\frac{4}{3}}} \\ &= \sqrt{\frac{2}{3}\times \frac{3}{4}} \\ &= \sqrt{\frac{2}{4}} \\ \tan A &= \frac{\sqrt{2}}{2} \end{align}$
Jawaban: B
A. $\sqrt{2+\sqrt{2}}$
B. $\sqrt{2-\sqrt{2}}$
C. $\frac{1}{2}\sqrt{2+\sqrt{2}}$
D. $\frac{1}{2}\sqrt{2-\sqrt{2}}$
E. $2\sqrt{2+\sqrt{2}}$
Jawaban: C
A. $\sqrt{2+\sqrt{2}}$
B. $\sqrt{2-\sqrt{2}}$
C. $\frac{1}{2}\sqrt{2+\sqrt{2}}$
D. $\frac{1}{2}\sqrt{2-\sqrt{2}}$
E. $2\sqrt{2+\sqrt{2}}$
Jawaban: C
A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{2}{5}$
D. $\frac{1}{3}\sqrt{5}$
E. $\frac{1}{2}\sqrt{5}$
$\tan C=\frac{1}{2}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{1^2+2^2} \\ mi &= \sqrt{5} \end{align}$
$\sin C=-\frac{de}{mi}\Leftrightarrow \sin C=-\frac{1}{\sqrt{5}}$
$\begin{align}\cos 2C &= 1-2{\sin }^2C \\ &= 1-2.{\left( -\frac{1}{\sqrt{5}} \right)^2} \\ &= 1-\frac{2}{5} \\ \cos 2C &= \frac{3}{5} \end{align}$
Jawaban: A
A. $\frac{3}{2}$
B. $\frac{5}{12}$
C. $\frac{12}{5}$
D. $\frac{13}{5}$
E. $\frac{36}{5}$
Jawaban: C
A. $2\sin x$
B. $\sin 2x$
C. $2\cos x$
D. $\cos 2x$
E. $\tan 2x$
Jawaban: B
A. $\frac{2a}{1+a^2}$
B. $\frac{1+a^2}{2a}$
C. $\frac{1-a^2}{1+a^2}$
D. $\frac{1+a^2}{1-a^2}$
E. $\frac{a}{a+a^2}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{a^2+1^2} \\ mi &= \sqrt{a^2+1} \end{align}$
$\sin x=\frac{de}{mi}\Leftrightarrow \sin x=\frac{a}{\sqrt{a^2+1}}$
$\cos x=\frac{sa}{mi}\Leftrightarrow \cos x=\frac{1}{\sqrt{a^2+1}}$
$\begin{align}\sin 2x &= 2\sin x\cos x \\ &= 2.\frac{a}{\sqrt{a^2+1}}.\frac{1}{\sqrt{a^2+1}} \\ \sin 2x &= \frac{2a}{a^2+1} \end{align}$
Jawaban: A
A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
= $6\times 2\sin \left( 22\frac{1}{2} \right)^\circ .\cos \left( 22\frac{1}{2} \right)^\circ $
= $6\sin 2\times \left( 22\frac{1}{2} \right)^\circ $
= $6\sin 45^\circ $
= $6\times \frac{1}{2}\sqrt{2}$
= $3\sqrt{2}$
Jawaban: A
A. ${\tan }^2\theta +{\sin }^2\theta $
B. ${\tan }^2\theta -{\sin }^2\theta $
C. ${\sin }^2\theta -{\cos }^2\theta $
D. ${\cos }^2\frac{1}{2}\theta +{\tan }^2\frac{1}{2}\theta $
E. ${\sin }^2\frac{1}{2}\theta +{\tan }^2\frac{1}{2}\theta $
$\begin{align}x^2-\frac{1}{x^2} &= {\left( \frac{1}{\cos \theta } \right)^2}-\frac{1}{{\left( \frac{1}{\cos \theta } \right)^2}} \\ &= \frac{1}{{\cos }^2\theta }-{\cos }^2\theta \\ &= {{\sec }^2}\theta -{\cos }^2\theta \\ &= {\tan }^2\theta +1-{\cos }^2\theta \\ x^2-\frac{1}{{{x}^2}} &= {\tan }^2\theta +{\sin }^2\theta \end{align}$
Jawaban: A
A. $\frac{1}{2}\sqrt{3}$
B. $\frac{1}{2}$
C. 0
D. $-\frac{1}{2}\sqrt{3}$
E. $-\frac{1}{2}$
$\begin{align}\tan 2\alpha &= 4\sin \alpha \cos \alpha \\ \tan 2\alpha &= 2.2\sin \alpha \cos \alpha \\ \frac{\sin 2\alpha }{\cos 2\alpha } &= 2\sin 2\alpha \\ \sin 2\alpha &= 2\sin 2\alpha \cos 2\alpha \\ 1 &= 2\cos 2\alpha \\ \cos 2\alpha &= \frac{1}{2} \\ 2{\cos }^2\alpha -1 &= \frac{1}{2} \\ 2{\cos }^2\alpha &= \frac{1}{2}+1 \\ 2{\cos }^2\alpha &= \frac{3}{2} \\ {\cos }^2\alpha &= \frac{3}{4} \\ \cos \alpha &= -\frac{\sqrt{3}}{2} \end{align}$
Jawaban: D
A. $\frac{1}{3}\sqrt{3}$
B. $\frac{1}{2}\sqrt{2}$
C. $\frac{1}{3}\sqrt{6}$
D. $\frac{2}{3}\sqrt{5}$
E. $\frac{2}{3}\sqrt{6}$
Cara 1. Menggunakan rumus trigonometri sudut ganda
$\begin{align}\cos 2A &= \frac{1}{3} \\ 1-2{\sin }^2A &= \frac{1}{3} \\ -2{\sin }^2A &= \frac{1}{3}-1 \\ -2{\sin }^2A &= -\frac{2}{3} \\ {\sin }^2A &= \frac{1}{3} \\ \sin A &= \sqrt{\frac{1}{3}} \\ \sin A &= \frac{1}{\sqrt{3}} \\ \sin A &= \frac{1}{3}\sqrt{3} \end{align}$
Cara 2. Menggunakan rumus trigonometri sudut pertengahan.
$\begin{align}\sin A &= \sin \frac{1}{2}(2A) \\ &= \sqrt{\frac{1-\cos 2A}{2}} \\ &= \sqrt{\frac{1-\frac{1}{3}}{2}} \\ &= \sqrt{\frac{1}{3}} \\ &= \frac{1}{\sqrt{3}} \\ \sin A &= \frac{1}{3}\sqrt{3} \end{align}$
Jawaban: A
A. $2\sqrt{6}$
B. $\frac{2}{5}\sqrt{6}$
C. $\frac{2}{5\sqrt{6}}$
D. $-\frac{2}{5}\sqrt{6}$
E. $-2\sqrt{6}$
$\begin{align}{\sin }^2x &= \frac{3}{5} \\ \sin x &= \sqrt{\frac{3}{5}} \\ \sin x &= \frac{\sqrt{3}}{\sqrt{5}}=\frac{de}{mi} \end{align}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{(\sqrt{5})}^2}-(\sqrt{3})^2} \\ sa &= \sqrt{2} \end{align}$
$\tan x=-\frac{de}{sa}\Leftrightarrow \tan x=-\frac{\sqrt{3}}{\sqrt{2}}$
$\begin{align}\tan 2x &= \frac{2\tan x}{1-{\tan }^2x} \\ &= \frac{2\left( -\frac{\sqrt{3}}{\sqrt{2}} \right)}{1-{\left( -\frac{\sqrt{3}}{\sqrt{2}} \right)^2}} \\ &= \frac{-\frac{2\sqrt{3}}{\sqrt{2}}}{1-\frac{3}{2}} \\ &= \frac{-\frac{2\sqrt{3}}{\sqrt{2}}}{-\frac{1}{2}} \\ &= -\frac{2\sqrt{3}}{\sqrt{2}}\times \left( -\frac{2}{1} \right) \\ &= \frac{4\sqrt{3}}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ \tan 2x &= 2\sqrt{6} \end{align}$
Jawaban: A
A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
$\begin{align}& 6-12{\sin }^2\frac{\pi }{12} &= 6\left( 1-2{\sin }^2\frac{\pi }{12} \right) \\ &= 6\left( \cos 2.\frac{\pi }{12} \right) \\ &= 6\cos \frac{\pi }{6} \\ &= 6\times \frac{1}{2}\sqrt{3} \\ 6-12{\sin }^2\frac{\pi }{12} &= 3\sqrt{3} \end{align}$
Jawaban: C
A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
Jawaban: E
A. $-2$
B. $-\frac{4}{3}$
C. $-\frac{4}{5}$
D. $\frac{4}{3}$
E. 2
$\sin p=\frac{2}{\sqrt{5}}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{(\sqrt{5})}^2}-2^2} \\ sa &= 1 \end{align}$
$\tan p=\frac{de}{sa}\Leftrightarrow \tan p=\frac{2}{1}=2$
$\begin{align}\tan 2p &= \frac{2\tan p}{1-{\tan }^2p} \\ &= \frac{2.2}{1-2^2} \\ \tan 2p &= -\frac{4}{3} \end{align}$
Jawaban: B
A. $\frac{14}{625}$
B. $\frac{24}{625}$
C. $\frac{48}{625}$
D. $\frac{168}{625}$
E. $\frac{336}{625}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{25}^2}-{{7}^2}} \\ sa &= 24 \end{align}$
$\cos A=\frac{sa}{mi}\Leftrightarrow \cos A=\frac{24}{25}$
$\begin{align}\sin 2A &= 2\sin A\cos A \\ &= 2.\frac{7}{25}.\frac{24}{25} \\ \sin 2A &= \frac{336}{625} \end{align}$
Jawaban: E
A. 1
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. $\sqrt{2}$
E. $2\sqrt{3}$
$\begin{align}\frac{2\tan 112,5^\circ }{1-{\tan }^2112,5^\circ } &= \tan (2\times 112,5^\circ ) \\ &= \tan 225^\circ \\ &= 1 \end{align}$
Jawaban: A
A. $\frac{576}{675}$
B. $\frac{572}{675}$
C. $\frac{563}{625}$
D. $\frac{527}{625}$
E. $\frac{513}{576}$
Jawaban: D
A. $\frac{4\sqrt{2}}{9}$
B. $\frac{7}{9}$
C. $-\frac{7}{9}$
D. $-\frac{4}{7}$
E. $\frac{4\sqrt{7}}{7}$
Jawaban: C
A. $\frac{1}{16}$
B. $\frac{7}{16}$
C. $\frac{1}{4}$
D. $\frac{7}{8}$
E. 1
Jawaban: D
A. $\frac{2}{\sqrt{5}}$
B. $\frac{2}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{5}$
E. $\frac{2}{5}\sqrt{5}$
$\tan \alpha =\frac{1}{2}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{1^2+2^2} \\ mi &= \sqrt{5} \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{1}{\sqrt{5}}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{2}{\sqrt{5}}$
$\begin{align}\sin 2\alpha &= 2\sin \alpha \cos \alpha \\ &= 2.\frac{1}{\sqrt{5}}.\frac{2}{\sqrt{5}} \\ \sin 2\alpha &= \frac{4}{5} \end{align}$
Jawaban: C
A. $-1$
B. $-\frac{1}{2}$
C. $-\frac{1}{5}$
D. $-\frac{1}{25}$
E. 1
Jawaban: D
A. $\{0,\pi \}$
B. $\left\{ \frac{\pi }{2},\pi \right\}$
C. $\left\{ \frac{3\pi }{2},\pi \right\}$
D. $\left\{ \frac{\pi }{2},\frac{3\pi }{2} \right\}$
E. $\left\{ 0,\frac{3\pi }{2} \right\}$
$\begin{align}\sin 2x+2\cos x&= 0 \\ 2\sin x\cos x+2\cos x &= 0 \\ \sin x\cos x+\cos x &= 0 \\ \cos x(\sin x+1) &= 0 \end{align}$
$\cos x=0\to x=90^\circ \,\text{atau}\,x=270^\circ $
$\sin x+1=0\Leftrightarrow \sin x=-1\to x=270^\circ $
HP = $\left\{ 90^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{90^\circ \pi }{180^\circ },\frac{270^\circ \pi }{180^\circ } \right\}$ = $\left\{ \frac{\pi }{2},\frac{3\pi }{2} \right\}$
Jawaban: D
A. $\{30^\circ ,60^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,270^\circ \}$
D. $\{150^\circ ,300^\circ \}$
E. $\{270^\circ ,360^\circ \}$
$\begin{align}2\sin 2x+4\cos x &= 0 \\ \sin 2x+2\cos x &= 0 \\ 2\sin x\cos x+2\cos x &= 0 \\ \sin x\cos x+\cos x &= 0 \\ \cos x(\sin x+1) &= 0 \end{align}$
$\cos x=0\to x=90^\circ \,\text{atau}\,x=270^\circ $
$\sin x+1=0\Leftrightarrow \sin x=-1\to x=270^\circ $
HP = $\left\{ 90^\circ ,270^\circ \right\}$
Jawaban: C
A. 3
B. $3\sqrt{2}$
C. $\frac{1}{2}\sqrt{3}$
D. $\frac{1}{2}$
E. 1
= $\cos 72^\circ +\sin (2.36)^\circ .\tan 36^\circ $
= $\cos 72^\circ +2\sin 36^\circ \cos 36^\circ .\frac{\sin 36^\circ }{\cos 36^\circ }$
= $\cos (2.36)^\circ +2{\sin }^236^\circ $
= $1-2{\sin }^236^\circ +2{\sin }^236^\circ $
= 1
Jawaban: E
A. $\sec A$
B. $\csc A$
C. ${{\sec }^2}A$
D. $2+\csc A$
E. $2\sec A$
= $\frac{2\sin A\cos A}{\sin A}-\frac{2{\cos }^2A-1}{\cos A}$
= $2\cos A-2\cos A+\frac{1}{\cos A}$
= $\frac{1}{\cos A}$
= $\sec A$
Jawaban: A
A. $\frac{12}{7}$
B. $-\frac{24}{7}$
C. $-\frac{12}{7}$
D. $\frac{24}{7}$
E. $-\frac{15}{7}$
$\sin A=\frac{3}{5}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{5^2-3^2} \\ sa &= 4 \end{align}$
$\tan A=-\frac{de}{sa}\Leftrightarrow \tan A=-\frac{3}{4}$
$\begin{align}\tan 2A &= \frac{2\tan A}{1-{\tan }^2A} \\ &= \frac{2\left( -\frac{3}{4} \right)}{1-{\left( -\frac{3}{4} \right)^2}} \\ &= \frac{-\frac{3}{2}}{1-\frac{9}{16}} \\ &= \frac{-\frac{3}{2}}{\frac{7}{16}} \\ &= -\frac{3}{2}\times \frac{16}{7} \\ \tan 2A &= -\frac{24}{7} \end{align}$
Jawaban: B
A. $\tan A$
B. $2\tan A$
C. $\cot A$
D. $\cot 2A$
E. $\tan 2A$
= $\frac{1+\sin 2A-(1-2{\sin }^2A)}{1+\sin 2A+(2{\cos }^2A-1)}$
= $\frac{\sin 2A+2{\sin }^2A}{\sin 2A+2{\cos }^2A}$
= $\frac{2\sin A\cos A+2{\sin }^2A}{2\sin A\cos A+2{\cos }^2A}$
= $\frac{2\sin A(\cos A+\sin A)}{2\cos A(\sin A+\cos A)}$
= $\frac{\sin A}{\cos A}$
= $\tan A$
Jawaban: A
A. $\frac{4n}{\sqrt{1+n^2}}$
B. $\frac{4(1-n^2)}{1+n^2}$
C. $\frac{4n}{1+n^2\sqrt{1+n^2}}$
D. $\frac{4n(1-n^2)}{1+n^2}$
E. $\frac{4n(1-n^2)}{{{(1+n^2)}^2}}$
$mi=\sqrt{de^2+sa^2}=\sqrt{n^2+1}$
$\sin 3x=\frac{de}{mi}\Leftrightarrow \sin 3x=\frac{n}{\sqrt{n^2+1}}$
$\cos 3x=\frac{sa}{mi}\Leftrightarrow \cos 3x=\frac{1}{\sqrt{n^2+1}}$
maka:
$\sin 12x$
= $\sin 2(6x)$
= $2\sin 6x\cos 6x$
= $2\sin 2(3x).\cos 2(3x)$
= $2.2\sin 3x\cos 3x.(2{\cos }^23x-1)$
= $4\sin 3x\cos 3x.(2{\cos }^23x-1)$
= $4.\frac{n}{\sqrt{n^2+1}}.\frac{1}{\sqrt{n^2+1}}\left( 2{\left( \frac{1}{\sqrt{n^2+1}} \right)^2}-1 \right)$
= $\frac{4n}{n^2+1}\left( \frac{2}{n^2+1}-1 \right)$
= $\frac{4n}{n^2+1}\left( \frac{2}{n^2+1}-\frac{n^2+1}{n^2+1} \right)$
= $\frac{4n}{n^2+1}.\frac{1-n^2}{n^2+1}$
= $\frac{4n(1-n^2)}{{{(n^2+1)}^2}}$
Jawaban: E
A. $-\frac{1}{2}\sqrt{2}$
B. $-\frac{3}{10}\sqrt{10}$
C. $-\frac{1}{10}\sqrt{10}$
D. $-\frac{1}{10}\sqrt{30}$
E. $-\frac{9}{10}\sqrt{10}$
$\frac{180^\circ }{2} < \frac{A}{2} < \frac{270^\circ }{2}\Leftrightarrow 90^\circ < \frac{1}{2}A < 135^\circ $ maka $\cos \frac{1}{2}A$ negatif.
$\tan A=\frac{3}{4}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{3^2+4^2} \\ mi &= 5 \end{align}$
$\cos A=-\frac{sa}{mi}\Leftrightarrow \cos A=-\frac{4}{5}$
$\begin{align}\cos \frac{1}{2}A &= -\sqrt{\frac{1-\cos A}{2}} \\ &= -\sqrt{\frac{1-\left( -\frac{4}{5} \right)}{2}} \\ &= -\sqrt{\frac{9}{10}} \\ &= -\frac{3}{\sqrt{10}} \\ \cos A &= -\frac{3}{10}\sqrt{10} \end{align}$
Jawaban: B
A. $-\frac{1}{2}\sqrt{4+\sqrt{2}}$
B. $-\frac{1}{2}\sqrt{2+\sqrt{2}}$
C. $-\frac{1}{2}\sqrt{1+\sqrt{2}}$
D. $-\frac{1}{2}\sqrt{1-\sqrt{2}}$
E. $-\frac{1}{2}\sqrt{2-\sqrt{2}}$
Jawaban: B
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Soal No. 1
Jika $1-\cot \alpha =-\frac{1}{3}$ maka nilai $\sin 2\alpha +\cos 2\alpha $ = ….A. $\frac{17}{25}$
B. 1
C. $\frac{6}{5}$
D. $\frac{31}{25}$
E. $\frac{7}{5}$
Penyelesaian: Lihat/Tutup
$\begin{align}1-\cot \alpha &= -\frac{1}{3} \\ 1+\frac{1}{3} &= \cot \alpha \\ \cot \alpha =\frac{4}{3} = \frac{sa}{de} \end{align}$$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{3^2+4^2} \\ mi &= 5 \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{3}{5}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{4}{5}$
maka:
$\sin 2\alpha +\cos 2\alpha $
= $2\sin \alpha \cos \alpha +2{{\cos }^{2}}\alpha -1$
= $2.\frac{3}{5}.\frac{4}{5}+2{\left( \frac{4}{5} \right)^2}-1$
= $\frac{24}{25}+\frac{32}{25}-\frac{25}{25}$
= $\frac{31}{25}$
Jawaban: D
Soal No. 2
Jika $\sin A=\frac{4}{5}$ untuk A sudut tumpul, maka $\cos 2A$ adalah ….A. $\frac{12}{25}$
B. $\frac{7}{25}$
C. $\frac{3}{25}$
D. $-\frac{7}{25}$
E. $-\frac{3}{25}$
Penyelesaian: Lihat/Tutup
$\sin A=\frac{4}{5}$ maka:$\begin{align}\cos 2A &= 1-2{\sin }^2A \\ &= 1-2{\left( \frac{4}{5} \right)^2} \\ &= 1-\frac{32}{25} \\ \cos 2A &= -\frac{7}{25} \end{align}$
Jawaban: D
Soal No. 3
Bentuk $\frac{\sin 4p}{\sin 2p}$ identik dengan ….A. $1-2{\cos }^2p$
B. $2{\sin }^2p-1$
C. $1-2{\sin }^2p$
D. $2(1-2{\sin }^2p)$
E. $2{\cos }^2p-1$
Penyelesaian: Lihat/Tutup
$\begin{align}\frac{\sin 4p}{\sin 2p} &= \frac{\sin 2(2p)}{\sin 2p} \\ &= \frac{2\sin 2p\cos 2p}{\sin 2p} \\ &= 2\cos 2p \\ \frac{\sin 4p}{\sin 2p} &= 2(1-2{\sin }^2p) \end{align}$Jawaban: D
Soal No. 4
Diketahui $\cos 2A=\frac{1}{3}$ dengan A adalah sudut lancip maka nilai $\tan A$ = ….A. $\frac{1}{3}\sqrt{3}$
B. $\frac{1}{2}\sqrt{2}$
C. $\frac{1}{3}\sqrt{6}$
D. $\frac{2}{3}\sqrt{6}$
E. $\frac{2}{5}\sqrt{5}$
Penyelesaian: Lihat/Tutup
Cara 1. Menggunakan rumus trigonometri sudut ganda.$\begin{align}\cos 2A &= \frac{1}{3} \\ 2{\cos }^2A-1 &= \frac{1}{3} \\ 2{\cos }^2A &= \frac{1}{3}+1 \\ 2{\cos }^2A &= \frac{4}{3} \\ {\cos }^2A &= \frac{2}{3} \\ \cos A &= \frac{\sqrt{2}}{\sqrt{3}}= \frac{sa}{mi} \end{align}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \\ de &= 1 \end{align}$
$\tan A=\frac{de}{sa}\Leftrightarrow \tan A=\frac{1}{\sqrt{2}}=\frac{1}{2}\sqrt{2}$
Cara 2. Menggunakan rumus trigonometri pertengahan sudut: $\tan \frac{1}{2}\alpha =\pm \sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }}$ maka:
$\begin{align}\tan A &= \tan \frac{1}{2}(2A) \\ &= \sqrt{\frac{1-\cos 2A}{1+\cos 2A}} \\ &= \sqrt{\frac{1-\frac{1}{3}}{1+\frac{1}{3}}} \\ &= \sqrt{\frac{\frac{2}{3}}{\frac{4}{3}}} \\ &= \sqrt{\frac{2}{3}\times \frac{3}{4}} \\ &= \sqrt{\frac{2}{4}} \\ \tan A &= \frac{\sqrt{2}}{2} \end{align}$
Jawaban: B
Soal No. 5
Nilai $\cos \left( 22\frac{1}{2} \right)^\circ $ = ….A. $\sqrt{2+\sqrt{2}}$
B. $\sqrt{2-\sqrt{2}}$
C. $\frac{1}{2}\sqrt{2+\sqrt{2}}$
D. $\frac{1}{2}\sqrt{2-\sqrt{2}}$
E. $2\sqrt{2+\sqrt{2}}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos \left( 22\frac{1}{2} \right)^\circ &= \cos \left( \frac{45}{2} \right)^\circ \\ &= \cos \frac{1}{2}.45^\circ \\ &= \sqrt{\frac{1+\cos 45^\circ }{2}} \\ &= \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} \\ &= \sqrt{\frac{\frac{2+\sqrt{2}}{2}}{2}} \\ &= \sqrt{\frac{2+\sqrt{2}}{4}} \\ \cos \left( 22\frac{1}{2} \right)^\circ &= \frac{1}{2}\sqrt{2+\sqrt{2}} \end{align}$Jawaban: C
Soal No. 6
Nilai $\sin 112,5^\circ $ = ….A. $\sqrt{2+\sqrt{2}}$
B. $\sqrt{2-\sqrt{2}}$
C. $\frac{1}{2}\sqrt{2+\sqrt{2}}$
D. $\frac{1}{2}\sqrt{2-\sqrt{2}}$
E. $2\sqrt{2+\sqrt{2}}$
Penyelesaian: Lihat/Tutup
$\begin{align}\sin 112,5^\circ &= \sin \frac{1}{2}.225^\circ \\ &= \sqrt{\frac{1-\cos 225^\circ }{2}} \\ &= \sqrt{\frac{1-\left( -\frac{\sqrt{2}}{2} \right)}{2}} \\ &= \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} \\ &= \sqrt{\frac{2+\sqrt{2}}{4}} \\ \sin 112,5^\circ &= \frac{1}{2}\sqrt{2+\sqrt{2}} \end{align}$Jawaban: C
Soal No. 7
Jika $\tan C=\frac{1}{2}$ dan C sudut pada kuadran III maka nilai $\cos 2C$ = ….A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{2}{5}$
D. $\frac{1}{3}\sqrt{5}$
E. $\frac{1}{2}\sqrt{5}$
Penyelesaian: Lihat/Tutup
C sudut pada kuadran III maka $\sin C$ negatif.$\tan C=\frac{1}{2}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{1^2+2^2} \\ mi &= \sqrt{5} \end{align}$
$\sin C=-\frac{de}{mi}\Leftrightarrow \sin C=-\frac{1}{\sqrt{5}}$
$\begin{align}\cos 2C &= 1-2{\sin }^2C \\ &= 1-2.{\left( -\frac{1}{\sqrt{5}} \right)^2} \\ &= 1-\frac{2}{5} \\ \cos 2C &= \frac{3}{5} \end{align}$
Jawaban: A
Soal No. 8
Diketahui nilai $\tan x=\frac{2}{3}$ dan $0^\circ < x <90^\circ $ maka $\tan 2x$ = ….A. $\frac{3}{2}$
B. $\frac{5}{12}$
C. $\frac{12}{5}$
D. $\frac{13}{5}$
E. $\frac{36}{5}$
Penyelesaian: Lihat/Tutup
$\begin{align}\tan 2x &= \frac{2\tan x}{1-{\tan }^2x} \\ &= \frac{2.\frac{2}{3}}{1-{\left( \frac{2}{3} \right)^2}} \\ &= \frac{\frac{4}{3}}{\frac{5}{9}} \\ &= \frac{4}{3}\times \frac{9}{5} \\ \tan 2x &= \frac{12}{5} \end{align}$Jawaban: C
Soal No. 9
Bentuk $\frac{2\tan x}{1+{\tan }^2x}$ ekuivalen dengan ….A. $2\sin x$
B. $\sin 2x$
C. $2\cos x$
D. $\cos 2x$
E. $\tan 2x$
Penyelesaian: Lihat/Tutup
$\begin{align}\frac{2\tan x}{1+{\tan }^2x} &= \frac{2\tan x}{{{\sec }^2}x} \\ &= 2\tan x{\cos }^2x \\ &= 2\frac{\sin x}{\cos x}.{\cos }^2x \\ &= 2\sin x\cos x \\ \frac{2\tan x}{1+{\tan }^2x} &= \sin 2x \end{align}$Jawaban: B
Soal No. 10
Jika $\tan x=a$, maka $\sin 2x$ sama dengan ….A. $\frac{2a}{1+a^2}$
B. $\frac{1+a^2}{2a}$
C. $\frac{1-a^2}{1+a^2}$
D. $\frac{1+a^2}{1-a^2}$
E. $\frac{a}{a+a^2}$
Penyelesaian: Lihat/Tutup
$\tan x=a\Leftrightarrow \tan x=\frac{a}{1}=\frac{de}{sa}$$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{a^2+1^2} \\ mi &= \sqrt{a^2+1} \end{align}$
$\sin x=\frac{de}{mi}\Leftrightarrow \sin x=\frac{a}{\sqrt{a^2+1}}$
$\cos x=\frac{sa}{mi}\Leftrightarrow \cos x=\frac{1}{\sqrt{a^2+1}}$
$\begin{align}\sin 2x &= 2\sin x\cos x \\ &= 2.\frac{a}{\sqrt{a^2+1}}.\frac{1}{\sqrt{a^2+1}} \\ \sin 2x &= \frac{2a}{a^2+1} \end{align}$
Jawaban: A
Soal No. 11
Nilai dari $12\sin \left( 22\frac{1}{2} \right)^\circ .\cos \left( 22\frac{1}{2} \right)^\circ $ = ….A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
Penyelesaian: Lihat/Tutup
$12\sin \left( 22\frac{1}{2} \right)^\circ .\cos \left( 22\frac{1}{2} \right)^\circ $= $6\times 2\sin \left( 22\frac{1}{2} \right)^\circ .\cos \left( 22\frac{1}{2} \right)^\circ $
= $6\sin 2\times \left( 22\frac{1}{2} \right)^\circ $
= $6\sin 45^\circ $
= $6\times \frac{1}{2}\sqrt{2}$
= $3\sqrt{2}$
Jawaban: A
Soal No. 12
Jika diketahui bahwa $\cos \frac{1}{2}\theta =\sqrt{\frac{x+1}{2x}}$ maka ${{x}^2}-\frac{1}{{{x}^2}}$ = ….A. ${\tan }^2\theta +{\sin }^2\theta $
B. ${\tan }^2\theta -{\sin }^2\theta $
C. ${\sin }^2\theta -{\cos }^2\theta $
D. ${\cos }^2\frac{1}{2}\theta +{\tan }^2\frac{1}{2}\theta $
E. ${\sin }^2\frac{1}{2}\theta +{\tan }^2\frac{1}{2}\theta $
Penyelesaian: Lihat/Tutup
$\begin{align}\cos \frac{1}{2}\theta &= \sqrt{\frac{x+1}{2x}} \\ \sqrt{\frac{1+\cos \theta }{2}} &= \sqrt{\frac{x+1}{2x}} \\ \frac{1+\cos \theta }{2} &= \frac{x+1}{2x} \\ 2x+2x\cos \theta &= 2x+2 \\ 2x\cos \theta &= 2 \\ x &= \frac{2}{2\cos \theta } \\ x &= \frac{1}{\cos \theta } \end{align}$$\begin{align}x^2-\frac{1}{x^2} &= {\left( \frac{1}{\cos \theta } \right)^2}-\frac{1}{{\left( \frac{1}{\cos \theta } \right)^2}} \\ &= \frac{1}{{\cos }^2\theta }-{\cos }^2\theta \\ &= {{\sec }^2}\theta -{\cos }^2\theta \\ &= {\tan }^2\theta +1-{\cos }^2\theta \\ x^2-\frac{1}{{{x}^2}} &= {\tan }^2\theta +{\sin }^2\theta \end{align}$
Jawaban: A
Soal No. 13
Jika $\tan 2\alpha =4\sin \alpha \cos \alpha $ untuk $\frac{\pi }{2} ≪ a < \pi $ maka $\cos \alpha $ = ….A. $\frac{1}{2}\sqrt{3}$
B. $\frac{1}{2}$
C. 0
D. $-\frac{1}{2}\sqrt{3}$
E. $-\frac{1}{2}$
Penyelesaian: Lihat/Tutup
$\frac{\pi }{2}≪ a < \pi $ maka $\cos \alpha $ negatif.$\begin{align}\tan 2\alpha &= 4\sin \alpha \cos \alpha \\ \tan 2\alpha &= 2.2\sin \alpha \cos \alpha \\ \frac{\sin 2\alpha }{\cos 2\alpha } &= 2\sin 2\alpha \\ \sin 2\alpha &= 2\sin 2\alpha \cos 2\alpha \\ 1 &= 2\cos 2\alpha \\ \cos 2\alpha &= \frac{1}{2} \\ 2{\cos }^2\alpha -1 &= \frac{1}{2} \\ 2{\cos }^2\alpha &= \frac{1}{2}+1 \\ 2{\cos }^2\alpha &= \frac{3}{2} \\ {\cos }^2\alpha &= \frac{3}{4} \\ \cos \alpha &= -\frac{\sqrt{3}}{2} \end{align}$
Jawaban: D
Soal No. 14
Diketahui sudut lancip A dengan $\cos 2A=\frac{1}{3}$ nilai $\sin A$ = ….A. $\frac{1}{3}\sqrt{3}$
B. $\frac{1}{2}\sqrt{2}$
C. $\frac{1}{3}\sqrt{6}$
D. $\frac{2}{3}\sqrt{5}$
E. $\frac{2}{3}\sqrt{6}$
Penyelesaian: Lihat/Tutup
A sudut lancip maka $\sin A$ positif.Cara 1. Menggunakan rumus trigonometri sudut ganda
$\begin{align}\cos 2A &= \frac{1}{3} \\ 1-2{\sin }^2A &= \frac{1}{3} \\ -2{\sin }^2A &= \frac{1}{3}-1 \\ -2{\sin }^2A &= -\frac{2}{3} \\ {\sin }^2A &= \frac{1}{3} \\ \sin A &= \sqrt{\frac{1}{3}} \\ \sin A &= \frac{1}{\sqrt{3}} \\ \sin A &= \frac{1}{3}\sqrt{3} \end{align}$
Cara 2. Menggunakan rumus trigonometri sudut pertengahan.
$\begin{align}\sin A &= \sin \frac{1}{2}(2A) \\ &= \sqrt{\frac{1-\cos 2A}{2}} \\ &= \sqrt{\frac{1-\frac{1}{3}}{2}} \\ &= \sqrt{\frac{1}{3}} \\ &= \frac{1}{\sqrt{3}} \\ \sin A &= \frac{1}{3}\sqrt{3} \end{align}$
Jawaban: A
Soal No. 15
Diketahui ${\sin }^2x=\frac{3}{5}$ untuk $\frac{\pi }{2}< x <\pi $, nilai $\tan 2x$ = ….A. $2\sqrt{6}$
B. $\frac{2}{5}\sqrt{6}$
C. $\frac{2}{5\sqrt{6}}$
D. $-\frac{2}{5}\sqrt{6}$
E. $-2\sqrt{6}$
Penyelesaian: Lihat/Tutup
$\frac{\pi }{2}< x <\pi $ maka $\sin x$ positif dan $\tan x$ negatif.$\begin{align}{\sin }^2x &= \frac{3}{5} \\ \sin x &= \sqrt{\frac{3}{5}} \\ \sin x &= \frac{\sqrt{3}}{\sqrt{5}}=\frac{de}{mi} \end{align}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{(\sqrt{5})}^2}-(\sqrt{3})^2} \\ sa &= \sqrt{2} \end{align}$
$\tan x=-\frac{de}{sa}\Leftrightarrow \tan x=-\frac{\sqrt{3}}{\sqrt{2}}$
$\begin{align}\tan 2x &= \frac{2\tan x}{1-{\tan }^2x} \\ &= \frac{2\left( -\frac{\sqrt{3}}{\sqrt{2}} \right)}{1-{\left( -\frac{\sqrt{3}}{\sqrt{2}} \right)^2}} \\ &= \frac{-\frac{2\sqrt{3}}{\sqrt{2}}}{1-\frac{3}{2}} \\ &= \frac{-\frac{2\sqrt{3}}{\sqrt{2}}}{-\frac{1}{2}} \\ &= -\frac{2\sqrt{3}}{\sqrt{2}}\times \left( -\frac{2}{1} \right) \\ &= \frac{4\sqrt{3}}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ \tan 2x &= 2\sqrt{6} \end{align}$
Jawaban: A
Soal No. 16
Nilai dari $6-12{\sin }^2\frac{\pi }{12}$ = ….A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
Penyelesaian: Lihat/Tutup
Ingat, $1-2{\sin }^2A=\cos 2A$ maka:$\begin{align}& 6-12{\sin }^2\frac{\pi }{12} &= 6\left( 1-2{\sin }^2\frac{\pi }{12} \right) \\ &= 6\left( \cos 2.\frac{\pi }{12} \right) \\ &= 6\cos \frac{\pi }{6} \\ &= 6\times \frac{1}{2}\sqrt{3} \\ 6-12{\sin }^2\frac{\pi }{12} &= 3\sqrt{3} \end{align}$
Jawaban: C
Soal No. 17
Nilai dari $4-8{\cos }^2\frac{3\pi }{8}$ = ….A. $3\sqrt{2}$
B. $4\sqrt{2}$
C. $3\sqrt{3}$
D. $2\sqrt{3}$
E. $2\sqrt{2}$
Penyelesaian: Lihat/Tutup
$\begin{align}4-8{\cos }^2\frac{3\pi }{8} &= 4-8\left( 1-{\sin }^2\frac{3\pi }{8} \right) \\ &= -4+8{\sin }^2\frac{3\pi }{8} \\ &= -4\left( 1-2{\sin }^2\frac{3\pi }{8} \right) \\ &= -4\cos \left( 2.\frac{3\pi }{8} \right) \\ &= -4\cos \frac{3\pi }{4} \\ &= -4\cos 135^\circ \\ &= -4\times \left( -\frac{1}{2}\sqrt{2} \right) \\ 4-8{\cos }^2\frac{3\pi }{8} &= 2\sqrt{2} \end{align}$Jawaban: E
Soal No. 18
Diketahui $\sin p=\frac{2}{\sqrt{5}}$ dan $0^\circ < p < 90^\circ $, nilai dari $\tan 2p$ = ….A. $-2$
B. $-\frac{4}{3}$
C. $-\frac{4}{5}$
D. $\frac{4}{3}$
E. 2
Penyelesaian: Lihat/Tutup
$0^\circ < p < 90^\circ $ maka $\tan p$ positif.$\sin p=\frac{2}{\sqrt{5}}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{(\sqrt{5})}^2}-2^2} \\ sa &= 1 \end{align}$
$\tan p=\frac{de}{sa}\Leftrightarrow \tan p=\frac{2}{1}=2$
$\begin{align}\tan 2p &= \frac{2\tan p}{1-{\tan }^2p} \\ &= \frac{2.2}{1-2^2} \\ \tan 2p &= -\frac{4}{3} \end{align}$
Jawaban: B
Soal No. 19
Diketahui $\sin A=\frac{7}{25}$ dan sudut A lancip. Nilai dari $\sin 2A$ adalah ….A. $\frac{14}{625}$
B. $\frac{24}{625}$
C. $\frac{48}{625}$
D. $\frac{168}{625}$
E. $\frac{336}{625}$
Penyelesaian: Lihat/Tutup
$\sin A=\frac{7}{25}=\frac{de}{mi}$$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{{{25}^2}-{{7}^2}} \\ sa &= 24 \end{align}$
$\cos A=\frac{sa}{mi}\Leftrightarrow \cos A=\frac{24}{25}$
$\begin{align}\sin 2A &= 2\sin A\cos A \\ &= 2.\frac{7}{25}.\frac{24}{25} \\ \sin 2A &= \frac{336}{625} \end{align}$
Jawaban: E
Soal No. 20
Nilai dari $\frac{2\tan 112,5^\circ }{1-{\tan }^2112,5^\circ }$ = ….A. 1
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. $\sqrt{2}$
E. $2\sqrt{3}$
Penyelesaian: Lihat/Tutup
Ingat: $\frac{2\tan x}{1-{\tan }^2x}=\tan 2x$$\begin{align}\frac{2\tan 112,5^\circ }{1-{\tan }^2112,5^\circ } &= \tan (2\times 112,5^\circ ) \\ &= \tan 225^\circ \\ &= 1 \end{align}$
Jawaban: A
Soal No. 21
Ditentukan $\sin A=\frac{7}{25}$ maka $\cos 2A$ = ….A. $\frac{576}{675}$
B. $\frac{572}{675}$
C. $\frac{563}{625}$
D. $\frac{527}{625}$
E. $\frac{513}{576}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 2A &= 1-2{\sin }^2A \\ &= 1-2{\left( \frac{7}{25} \right)^2} \\ &= 1-\frac{98}{625} \\ \cos 2A &= \frac{527}{625} \end{align}$Jawaban: D
Soal No. 22
Jika $\cos P=\frac{1}{3}$ dan P sudut lancip maka nilai $\cos 2P$ = ….A. $\frac{4\sqrt{2}}{9}$
B. $\frac{7}{9}$
C. $-\frac{7}{9}$
D. $-\frac{4}{7}$
E. $\frac{4\sqrt{7}}{7}$
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 2P &= 2{\cos }^2P-1 \\ &= 2{\left( \frac{1}{3} \right)^2}-1 \\ &= \frac{2}{9}-1 \\ \cos 2P &= -\frac{7}{9} \end{align}$Jawaban: C
Soal No. 23
Diketahui $\sin \alpha =\frac{1}{4}$ maka $\cos 2\alpha $ = ….A. $\frac{1}{16}$
B. $\frac{7}{16}$
C. $\frac{1}{4}$
D. $\frac{7}{8}$
E. 1
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 2\alpha &= 1-2{\sin }^2\alpha \\ &= 1-2{\left( \frac{1}{4} \right)^2} \\ &= 1-\frac{1}{8} \\ \cos 2\alpha &= \frac{7}{8} \end{align}$Jawaban: D
Soal No. 24
Jika $\tan \alpha =\frac{1}{2}$ dan $\alpha $ sudut lancip maka nilai $\sin 2\alpha $ = ….A. $\frac{2}{\sqrt{5}}$
B. $\frac{2}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{5}$
E. $\frac{2}{5}\sqrt{5}$
Penyelesaian: Lihat/Tutup
$\alpha $ sudut lancip maka $\sin \alpha $ positif dan $\cos \alpha $ positif.$\tan \alpha =\frac{1}{2}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{1^2+2^2} \\ mi &= \sqrt{5} \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{1}{\sqrt{5}}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{2}{\sqrt{5}}$
$\begin{align}\sin 2\alpha &= 2\sin \alpha \cos \alpha \\ &= 2.\frac{1}{\sqrt{5}}.\frac{2}{\sqrt{5}} \\ \sin 2\alpha &= \frac{4}{5} \end{align}$
Jawaban: C
Soal No. 25
Diketahui $\sin \alpha =\frac{1}{5}\sqrt{13}$, $\alpha $ sudut lancip. Nilai $\cos 2\alpha $ = ….A. $-1$
B. $-\frac{1}{2}$
C. $-\frac{1}{5}$
D. $-\frac{1}{25}$
E. 1
Penyelesaian: Lihat/Tutup
$\begin{align}\cos 2\alpha &= 1-2{\sin }^2\alpha \\ &= 1-2{\left( \frac{\sqrt{13}}{5} \right)^2} \\ &= 1-\frac{26}{25} \\ \cos 2\alpha &= -\frac{1}{25} \end{align}$Jawaban: D
Soal No. 26
Himpunan penyelesaian persamaan $\sin 2x+2\cos x=0$ untuk $0\le x\le 2\pi $ adalah ….A. $\{0,\pi \}$
B. $\left\{ \frac{\pi }{2},\pi \right\}$
C. $\left\{ \frac{3\pi }{2},\pi \right\}$
D. $\left\{ \frac{\pi }{2},\frac{3\pi }{2} \right\}$
E. $\left\{ 0,\frac{3\pi }{2} \right\}$
Penyelesaian: Lihat/Tutup
Ingat: Rumus Trigonometri Sudut Ganda, $\sin 2\alpha =2\sin \alpha \cos \alpha $.$\begin{align}\sin 2x+2\cos x&= 0 \\ 2\sin x\cos x+2\cos x &= 0 \\ \sin x\cos x+\cos x &= 0 \\ \cos x(\sin x+1) &= 0 \end{align}$
$\cos x=0\to x=90^\circ \,\text{atau}\,x=270^\circ $
$\sin x+1=0\Leftrightarrow \sin x=-1\to x=270^\circ $
HP = $\left\{ 90^\circ ,270^\circ \right\}$ atau
HP = $\left\{ \frac{90^\circ \pi }{180^\circ },\frac{270^\circ \pi }{180^\circ } \right\}$ = $\left\{ \frac{\pi }{2},\frac{3\pi }{2} \right\}$
Jawaban: D
Soal No. 27
Nilai $x$ yang memenuhi persamaan $2\sin 2x+4\cos x=0$ dan $0^\circ \le x\le 360^\circ $ adalah ….A. $\{30^\circ ,60^\circ \}$
B. $\{60^\circ ,90^\circ \}$
C. $\{90^\circ ,270^\circ \}$
D. $\{150^\circ ,300^\circ \}$
E. $\{270^\circ ,360^\circ \}$
Penyelesaian: Lihat/Tutup
Ingat: Rumus Trigonometri Sudut Ganda, $\sin 2\alpha =2\sin \alpha \cos \alpha $.$\begin{align}2\sin 2x+4\cos x &= 0 \\ \sin 2x+2\cos x &= 0 \\ 2\sin x\cos x+2\cos x &= 0 \\ \sin x\cos x+\cos x &= 0 \\ \cos x(\sin x+1) &= 0 \end{align}$
$\cos x=0\to x=90^\circ \,\text{atau}\,x=270^\circ $
$\sin x+1=0\Leftrightarrow \sin x=-1\to x=270^\circ $
HP = $\left\{ 90^\circ ,270^\circ \right\}$
Jawaban: C
Soal No. 28
Nilai dari $\cos 72^\circ +\sin 72^\circ .\tan 36^\circ $ = ….A. 3
B. $3\sqrt{2}$
C. $\frac{1}{2}\sqrt{3}$
D. $\frac{1}{2}$
E. 1
Penyelesaian: Lihat/Tutup
$\cos 72^\circ +\sin 72^\circ .\tan 36^\circ $= $\cos 72^\circ +\sin (2.36)^\circ .\tan 36^\circ $
= $\cos 72^\circ +2\sin 36^\circ \cos 36^\circ .\frac{\sin 36^\circ }{\cos 36^\circ }$
= $\cos (2.36)^\circ +2{\sin }^236^\circ $
= $1-2{\sin }^236^\circ +2{\sin }^236^\circ $
= 1
Jawaban: E
Soal No. 29
Bentuk $\frac{\sin 2A}{\sin A}-\frac{\cos 2A}{\cos A}$ = ….A. $\sec A$
B. $\csc A$
C. ${{\sec }^2}A$
D. $2+\csc A$
E. $2\sec A$
Penyelesaian: Lihat/Tutup
$\frac{\sin 2A}{\sin A}-\frac{\cos 2A}{\cos A}$= $\frac{2\sin A\cos A}{\sin A}-\frac{2{\cos }^2A-1}{\cos A}$
= $2\cos A-2\cos A+\frac{1}{\cos A}$
= $\frac{1}{\cos A}$
= $\sec A$
Jawaban: A
Soal No. 30
Jika $\sin A=\frac{3}{5}$ dan A sudut tumpul maka nilai $\tan 2A$ = ….A. $\frac{12}{7}$
B. $-\frac{24}{7}$
C. $-\frac{12}{7}$
D. $\frac{24}{7}$
E. $-\frac{15}{7}$
Penyelesaian: Lihat/Tutup
A sudut tumpul maka $\tan A$ negatif.$\sin A=\frac{3}{5}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{5^2-3^2} \\ sa &= 4 \end{align}$
$\tan A=-\frac{de}{sa}\Leftrightarrow \tan A=-\frac{3}{4}$
$\begin{align}\tan 2A &= \frac{2\tan A}{1-{\tan }^2A} \\ &= \frac{2\left( -\frac{3}{4} \right)}{1-{\left( -\frac{3}{4} \right)^2}} \\ &= \frac{-\frac{3}{2}}{1-\frac{9}{16}} \\ &= \frac{-\frac{3}{2}}{\frac{7}{16}} \\ &= -\frac{3}{2}\times \frac{16}{7} \\ \tan 2A &= -\frac{24}{7} \end{align}$
Jawaban: B
Soal No. 31
Bentuk sederhana dari $\frac{1+\sin 2A-\cos 2A}{1+\sin 2A+\cos 2A}$ adalah ….A. $\tan A$
B. $2\tan A$
C. $\cot A$
D. $\cot 2A$
E. $\tan 2A$
Penyelesaian: Lihat/Tutup
$\frac{1+\sin 2A-\cos 2A}{1+\sin 2A+\cos 2A}$= $\frac{1+\sin 2A-(1-2{\sin }^2A)}{1+\sin 2A+(2{\cos }^2A-1)}$
= $\frac{\sin 2A+2{\sin }^2A}{\sin 2A+2{\cos }^2A}$
= $\frac{2\sin A\cos A+2{\sin }^2A}{2\sin A\cos A+2{\cos }^2A}$
= $\frac{2\sin A(\cos A+\sin A)}{2\cos A(\sin A+\cos A)}$
= $\frac{\sin A}{\cos A}$
= $\tan A$
Jawaban: A
Soal No. 32
Diketahui $\tan 3x=n$ maka nilai $\sin 12x$ adalah ….A. $\frac{4n}{\sqrt{1+n^2}}$
B. $\frac{4(1-n^2)}{1+n^2}$
C. $\frac{4n}{1+n^2\sqrt{1+n^2}}$
D. $\frac{4n(1-n^2)}{1+n^2}$
E. $\frac{4n(1-n^2)}{{{(1+n^2)}^2}}$
Penyelesaian: Lihat/Tutup
$\tan 3x=n\Leftrightarrow \tan 3x=\frac{n}{1}=\frac{de}{sa}$ maka:$mi=\sqrt{de^2+sa^2}=\sqrt{n^2+1}$
$\sin 3x=\frac{de}{mi}\Leftrightarrow \sin 3x=\frac{n}{\sqrt{n^2+1}}$
$\cos 3x=\frac{sa}{mi}\Leftrightarrow \cos 3x=\frac{1}{\sqrt{n^2+1}}$
maka:
$\sin 12x$
= $\sin 2(6x)$
= $2\sin 6x\cos 6x$
= $2\sin 2(3x).\cos 2(3x)$
= $2.2\sin 3x\cos 3x.(2{\cos }^23x-1)$
= $4\sin 3x\cos 3x.(2{\cos }^23x-1)$
= $4.\frac{n}{\sqrt{n^2+1}}.\frac{1}{\sqrt{n^2+1}}\left( 2{\left( \frac{1}{\sqrt{n^2+1}} \right)^2}-1 \right)$
= $\frac{4n}{n^2+1}\left( \frac{2}{n^2+1}-1 \right)$
= $\frac{4n}{n^2+1}\left( \frac{2}{n^2+1}-\frac{n^2+1}{n^2+1} \right)$
= $\frac{4n}{n^2+1}.\frac{1-n^2}{n^2+1}$
= $\frac{4n(1-n^2)}{{{(n^2+1)}^2}}$
Jawaban: E
Soal No. 33
Diketahui $\tan A=\frac{3}{4}$ dan $180^\circ < A < 270^\circ $, maka nilai $\cos \frac{1}{2}A$ = ….A. $-\frac{1}{2}\sqrt{2}$
B. $-\frac{3}{10}\sqrt{10}$
C. $-\frac{1}{10}\sqrt{10}$
D. $-\frac{1}{10}\sqrt{30}$
E. $-\frac{9}{10}\sqrt{10}$
Penyelesaian: Lihat/Tutup
$180^\circ < A < 270^\circ $ maka $\cos A$ negatif.$\frac{180^\circ }{2} < \frac{A}{2} < \frac{270^\circ }{2}\Leftrightarrow 90^\circ < \frac{1}{2}A < 135^\circ $ maka $\cos \frac{1}{2}A$ negatif.
$\tan A=\frac{3}{4}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{3^2+4^2} \\ mi &= 5 \end{align}$
$\cos A=-\frac{sa}{mi}\Leftrightarrow \cos A=-\frac{4}{5}$
$\begin{align}\cos \frac{1}{2}A &= -\sqrt{\frac{1-\cos A}{2}} \\ &= -\sqrt{\frac{1-\left( -\frac{4}{5} \right)}{2}} \\ &= -\sqrt{\frac{9}{10}} \\ &= -\frac{3}{\sqrt{10}} \\ \cos A &= -\frac{3}{10}\sqrt{10} \end{align}$
Jawaban: B
Soal No. 34
Nilai $\cos \frac{9\pi }{8}$ adalah ….A. $-\frac{1}{2}\sqrt{4+\sqrt{2}}$
B. $-\frac{1}{2}\sqrt{2+\sqrt{2}}$
C. $-\frac{1}{2}\sqrt{1+\sqrt{2}}$
D. $-\frac{1}{2}\sqrt{1-\sqrt{2}}$
E. $-\frac{1}{2}\sqrt{2-\sqrt{2}}$
Penyelesaian: Lihat/Tutup
Ingat:
$\cos (180^\circ +\alpha )=-\cos \alpha $
$\cos \frac{1}{2}\alpha =\pm \sqrt{\frac{1+\cos \alpha }{2}}$
$\begin{align}\cos \left( \frac{9\pi }{8} \right) &= \cos \left( \frac{9\times 180^\circ }{8} \right) \\ &= \cos 202,5^\circ \\ &= \cos (180^\circ +22,5^\circ ) \\ &= -\cos 22,5^\circ \\ &= -\cos \left( \frac{1}{2}\times 45^\circ \right) \\ &= -\sqrt{\frac{1+\cos 45^\circ }{2}} \\ &= -\sqrt{\frac{1+\frac{1}{2}\sqrt{2}}{2}} \\ &= -\sqrt{\frac{\frac{2+\sqrt{2}}{2}}{2}} \\ &= -\sqrt{\frac{2+\sqrt{2}}{4}} \\ &= -\frac{\sqrt{2+\sqrt{2}}}{2} \\ \cos \left( \frac{9\pi }{8} \right) &= -\frac{1}{2}\sqrt{2+\sqrt{2}} \end{align}$$\cos (180^\circ +\alpha )=-\cos \alpha $
$\cos \frac{1}{2}\alpha =\pm \sqrt{\frac{1+\cos \alpha }{2}}$
Jawaban: B
Post a Comment for "Soal Trigonometri Sudut Ganda dan Sudut Pertengahan dan Pembahasan"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.