Skip to content Skip to sidebar Skip to footer

Soal Trigonometri Jumlah dan Selisih Dua Sudut dan Pembahasan

Hallo...! Pengunjung setia Catatan Matematika, kali ini Bang RP (Reikson Panjaitan, S.Pd) berbagi Kumpulan Soal Trigonometri Jumlah/Selisih Dua Sudut berserta pembahasannya. Ayo... manfaatkan website Catatan Matematika ini untuk belajar matematika secara online.
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".

Soal No. 1
Perhatikan pernyataan berikut.
1) $\sin (x+y)=\sin x\cos y+\cos x\sin y$
2) $\sin (x-y)=\sin x\cos y+\cos x\sin y$
3) $\cos (x+y)=\cos x\cos y+\sin x\sin y$
4) $\cos (x-y)=\cos x\cos y+\sin x\sin y$
5) $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x\tan y}$
6) $\tan (x-y)=\frac{\tan x+\tan y}{1+\tan x\tan y}$
Pernyataan yang benar adalah …
A. 1), 3), dan 5)
B. 1), 4), dan 5)
C. 1), 4), dan 6)
D. 2), 3), dan 6)
E. 2), 4), dan 6)
Penyelesaian: Lihat/Tutup Cukup jelas
Jawaban: B

Soal No. 2
Perhatikan segitiga ABC berikut.
Trigonometri Jumlah dan Selisih Dua Sudut
Nilai $\sin (x-y)$ = ….
A. $-\frac{96}{100}$
B. $-\frac{28}{100}$
C. 0
D. $\frac{28}{100}$
E. $\frac{96}{100}$
Penyelesaian: Lihat/Tutup $\begin{align}AC &= \sqrt{BC^2-AB^2} \\ &= \sqrt{10^2-6^2} \\ &= \sqrt{100-36} \\ &= \sqrt{64} \\ AC &= 8 \end{align}$
$\sin x=\frac{AB}{BC}=\frac{6}{10}$ dan $\cos x=\frac{AC}{BC}=\frac{8}{10}$
$\sin y=\frac{AC}{BC}=\frac{8}{10}$ dan $\cos y=\frac{AB}{BC}=\frac{6}{10}$
$\begin{align}\sin (x-y) &= \sin x\cos y-\cos x\sin y \\ &= \frac{6}{10}\times \frac{6}{10}-\frac{8}{10}\times \frac{8}{10} \\ &= \frac{36}{100}-\frac{64}{100} \\ \sin (x-y) &= -\frac{28}{100} \end{align}$
Jawaban: B

Soal No. 3
Nilai $\cos 15^\circ $ adalah ….
A. $\frac{1}{4}(\sqrt{6}+\sqrt{2})$
B. $\frac{1}{4}(\sqrt{6}-\sqrt{2})$
C. $\frac{1}{4}(\sqrt{2}-\sqrt{6})$
D. $\frac{1}{2}(\sqrt{3}-\sqrt{2})$
E. $\frac{1}{2}(\sqrt{3}+\sqrt{2})$
Penyelesaian: Lihat/Tutup $\begin{align}\cos 15^\circ &= \cos (45^\circ -30^\circ ) \\ &= \cos 45^\circ \cos 30^\circ +\sin 45^\circ \sin 30^\circ \\ &= \frac{1}{2}\sqrt{2}\times \frac{1}{2}\sqrt{3}+\frac{1}{2}\sqrt{2}\times \frac{1}{2} \\ &= \frac{1}{4}\sqrt{6}+\frac{1}{4}\sqrt{2} \\ \cos 15^\circ &= \frac{1}{4}(\sqrt{6}+\sqrt{2}) \end{align}$
Jawaban: A

Soal No. 4
Nilai $\tan 105^\circ $ adalah ….
A. $-2-2\sqrt{3}$
B. $-2-\sqrt{3}$
C. $-2+\sqrt{3}$
D. $-2+2\sqrt{3}$
E. $2+2\sqrt{3}$
Penyelesaian: Lihat/Tutup $\begin{align}\tan 105^\circ &= \tan (60+45) \\ &= \frac{\tan 45^\circ +\tan 60^\circ }{1-\tan 45^\circ \tan 60^\circ } \\ &= \frac{1+\sqrt{3}}{1-1\times \sqrt{3}} \\ &= \frac{1+\sqrt{3}}{1-\sqrt{3}}\times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\ &= \frac{1+2\sqrt{3}+3}{1-3} \\ &= \frac{4+2\sqrt{3}}{-2} \\ \tan 105^\circ &= -2-\sqrt{3} \end{align}$
Jawaban: B

Soal No. 5
Diketahui $0^\circ \le x\le 90^\circ $ dan $\tan x=\frac{4}{3}$. Nilai $\sin (30^\circ -x)$ adalah ….
A. $\frac{1}{10}(4\sqrt{3}-3)$
B. $\frac{1}{10}(4\sqrt{3}+3)$
C. $\frac{1}{10}(3-4\sqrt{3})$
D. $\frac{1}{10}(3-2\sqrt{3})$
E. $\frac{1}{10}(2\sqrt{3}+3)$
Penyelesaian: Lihat/Tutup $\tan x=\frac{4}{3}=\frac{de}{sa}$ maka:
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{4^2+3^2} \\ mi &= 5 \end{align}$
$\sin x=\frac{de}{mi}=\frac{4}{5}$ dan $\cos x=\frac{sa}{mi}=\frac{3}{5}$
$\begin{align}\sin (30^\circ -x) &= \sin 30^\circ \cos x-\cos 30^\circ \sin x \\ &= \frac{1}{2}\times \frac{3}{5}-\frac{1}{2}\sqrt{3}\times \frac{4}{5} \\ &= \frac{3}{10}-\frac{4\sqrt{3}}{10} \\ \sin (30^\circ -x) &= \frac{1}{10}(3-4\sqrt{3}) \end{align}$
Jawaban: C

Soal No. 6
Bentuk sederhana dari $\sin \alpha -\sin (\alpha -120^\circ )-\sin (\alpha -240^\circ )$ adalah ….
A. $\sin \alpha $
B. $\cos \alpha $
C. $\sin 2\alpha $
D. $2\sin \alpha $
E. $2\cos \alpha $
Penyelesaian: Lihat/Tutup $\sin \alpha -\sin (\alpha -120^\circ )-\sin (\alpha -240^\circ )$
= $\sin \alpha-$$(\sin \alpha \cos 120^\circ -\cos \alpha \sin 120^\circ )-$$(\sin \alpha \cos 240^\circ -\cos \alpha \sin 240^\circ )$
= $\sin \alpha-$$(\sin \alpha .(-\frac{1}{2})-\cos \alpha .\frac{1}{2}\sqrt{3})-$$(\sin \alpha .\frac{1}{2}-\cos \alpha .(-\frac{1}{2}\sqrt{3}))$
= $\sin \alpha+$$\frac{1}{2}\sin \alpha$ + $\frac{1}{2}\sqrt{3}\cos \alpha-$ $\frac{1}{2}\sin \alpha-$ $\frac{1}{2}\sqrt{3}\cos \alpha $
= $\sin \alpha $
Jawaban: A

Soal No. 7
Diketahui $\sin x=\frac{3}{5}$ dan $\cos y=\frac{12}{13}$, $x$ sudut tumpul dan $y$ sudut lancip. Nilai $\tan (x+y)$ adalah .…
A. $-\frac{56}{33}$
B. $-\frac{16}{63}$
C. $\frac{8}{63}$
D. $\frac{16}{63}$
E. $\frac{56}{33}$
Penyelesaian: Lihat/Tutup $\sin x=\frac{3}{5}=\frac{de}{mi}$; $x$ sudut tumpul maka:
$\begin{align}\tan x &= -\frac{de}{sa} \\ &= -\frac{de}{\sqrt{mi^2-de^2}} \\ &= -\frac{3}{\sqrt{5^2-3^2}} \\ \tan x &= -\frac{3}{4} \end{align}$
$\cos y=\frac{12}{13}=\frac{sa}{mi}$; $y$ sudut lancip maka:
$\begin{align}\tan y &= \frac{de}{sa} \\ &= \frac{\sqrt{mi^2-sa^2}}{sa} \\ &= \frac{\sqrt{13^2-12^2}}{12} \\ \tan y &= \frac{5}{12} \end{align}$
$\begin{align}\tan (x+y) &= \frac{\tan x+\tan y}{1-\tan x\tan y} \\ &= \frac{-\frac{3}{4}+\frac{5}{12}}{1-\left( -\frac{3}{4} \right)\times \frac{5}{12}} \\ &= \frac{-\frac{4}{12}}{1+\frac{5}{16}} \\ &= \frac{-\frac{1}{3}}{\frac{21}{16}} \\ &= -\frac{1}{3}\times \frac{16}{21} \\ \tan (x+y) &= -\frac{16}{63} \end{align}$
Jawaban: B

Soal No. 8
Jika $A+B=\frac{\pi }{3}$ dan $\cos A\cos B=\frac{7}{12}$, nilai $\cos (A-B)$ adalah ….
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. 1
E. $\frac{5}{4}$
Penyelesaian: Lihat/Tutup $\begin{align}A+B &= \frac{\pi }{3} \\ \cos (A+B) &= \cos \frac{\pi }{3} \\ \cos A\cos B-\sin A\sin B &= \frac{1}{2} \\ \frac{7}{12}-\sin A\sin B &= \frac{1}{2} \\ -\sin A\sin B &= \frac{1}{2}-\frac{7}{12} \\ -\sin A\sin B &= -\frac{1}{12} \\ \sin A\sin B &= \frac{1}{12} \end{align}$
$\begin{align}\cos (A-B) &= \cos A\cos B+\sin A\sin B \\ &= \frac{7}{12}-\frac{1}{12} \\ &= \frac{6}{12} \\ \cos (A-B) &= \frac{1}{2} \end{align}$
Jawaban: B

Soal No. 9
Jika $\tan A=\frac{4}{3}$ dan $\tan B=7$, hasil $A+B$ adalah ….
A. $45^\circ $
B. $135^\circ $
C. $150^\circ $
D. $225^\circ $
E. $330^\circ $
Penyelesaian: Lihat/Tutup $\begin{align}\tan (A+B) &= \frac{\tan A+\tan B}{1-\tan A\tan B} \\ &= \frac{\frac{4}{3}+7}{1-\frac{4}{3}\times 7} \\ &= \frac{\frac{25}{3}}{1-\frac{28}{3}} \\ &= \frac{\frac{25}{3}}{\frac{-25}{3}} \\ \tan (A+B) &= -1 \\ A+B &= {{\tan }^{-1}}(-1) \\ A+B &= 135^\circ \end{align}$
Jawaban: B

Soal No. 10
Jika $a\sin x+b\cos x=\sin (30^\circ +x)$ untuk setiap $x$, maka $a\sqrt{3}+b$ = …
A. $-1$
B. $-2$
C. 1
D. 2
E. 3
Penyelesaian: Lihat/Tutup $\begin{align}a\sin x+b\cos x &= \sin (30^\circ +x) \\ &= \sin 30^\circ \cos x+\cos 30^\circ \sin x \\ &= \frac{1}{2}\cos x+\frac{1}{2}\sqrt{3}\sin x \\ a\sin x+b\cos x &= \frac{1}{2}\sqrt{3}\sin x+\frac{1}{2}\cos x \end{align}$
$a=\frac{1}{2}\sqrt{3}$ dan $b=\frac{1}{2}$ maka:
$a\sqrt{3}+b=\frac{1}{2}\sqrt{3}.\sqrt{3}+\frac{1}{2}=2$
Jawaban: D

Soal No. 11
Diketahui $\tan \alpha -\tan \beta =\frac{1}{3}$ dan $\cos \alpha \cos \beta =\frac{48}{65}$, ($\alpha $, $\beta $ lancip). Nilai $\sin (\alpha -\beta )$ = ….
A. $\frac{63}{65}$
B. $\frac{33}{65}$
C. $\frac{30}{65}$
D. $\frac{26}{65}$
E. $\frac{16}{65}$
Penyelesaian: Lihat/Tutup $\begin{align}\tan \alpha -\tan \beta &= \frac{1}{3} \\ \frac{\sin \alpha }{\cos \alpha }-\frac{\sin \beta }{\cos \beta } &= \frac{1}{3} \\ \frac{\sin \alpha \cos \beta -\cos \alpha \sin \beta }{\cos \alpha \cos \beta } &= \frac{1}{3} \\ \frac{\sin (\alpha -\beta )}{\frac{48}{65}} &= \frac{1}{3} \\ \sin (\alpha -\beta ) &= \frac{1}{3}\times \frac{48}{65} \\ \sin (\alpha -\beta ) &= \frac{16}{65} \end{align}$
Jawaban: E

Soal No. 12
Diketahui $\tan \alpha =\frac{3}{4}$ dan $\tan \beta =\frac{5}{12}$; $\alpha $ dan $\beta $ sudut lancip, maka nilai $\cos (\alpha +\beta )$ = ….
A. $\frac{64}{65}$
B. $\frac{63}{65}$
C. $\frac{36}{65}$
D. $\frac{33}{65}$
E. $\frac{30}{65}$
Penyelesaian: Lihat/Tutup $\alpha $ sudut lancip maka $\sin \alpha $ (positif) dan $\cos \alpha $ (positif).
$\tan \alpha =\frac{3}{4}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{3^2+4^2} \\ mi &= 5 \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{3}{5}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{4}{5}$
$\beta $ sudut lancip maka $\sin \beta $ (positif) dan $\cos \beta $ (positif).
$\tan \beta =\frac{5}{12}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{5^2+12^2} \\ mi &= 13 \end{align}$
$\sin \beta =\frac{de}{mi}\Leftrightarrow \sin \beta =\frac{5}{13}$
$\cos \beta =\frac{sa}{mi}\Leftrightarrow \cos \beta =\frac{12}{13}$
$\begin{align}\cos (\alpha +\beta ) &= \cos \alpha \cos \beta -\sin \alpha \sin \beta \\ &= \frac{4}{5}\times \frac{12}{13}-\frac{3}{5}\times \frac{5}{13} \\ &= \frac{48}{65}-\frac{15}{65} \\ \cos (\alpha +\beta ) &= \frac{33}{65} \end{align}$
Jawaban: D

Soal No. 13
Diketahui $(A+B)=\frac{\pi }{3}$ dan $\sin A\sin B=\frac{1}{4}$. Nilai dari $\cos (A-B)$ = …
A. $-1$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$
E. 1
Penyelesaian: Lihat/Tutup $\begin{align}(A+B) &= \frac{\pi }{3} \\ \cos (A+B) &= \cos \frac{\pi }{3} \\ \cos A\cos B-\sin A\sin B &= \frac{1}{2} \\ \cos A\cos B-\frac{1}{4} &= \frac{1}{2} \\ \cos A\cos B &= \frac{1}{2}+\frac{1}{4} \\ \cos A\cos B &= \frac{3}{4} \end{align}$
$\begin{align}\cos (A-B) &= \cos A\cos B+\sin A\sin B \\ &= \frac{3}{4}+\frac{1}{4} \\ \cos (A-B) &= 1 \end{align}$
Jawaban: E

Soal No. 14
Diketahui $\sin A=\frac{4}{5}$ dan $\sin B=\frac{7}{25}$ dengan A sudut lancip dan B sudut tumpul. Nilai $\cos (A-B)$ = ….
A. $-\frac{117}{125}$
B. $-\frac{100}{125}$
C. $-\frac{75}{125}$
D. $-\frac{44}{125}$
E. $-\frac{21}{125}$
Penyelesaian: Lihat/Tutup A sudut lancip maka $\cos A$ (positif).
$\sin A=\frac{4}{5}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{5^2-4^2} \\ sa &= 3 \end{align}$
$\cos A=\frac{sa}{mi}\Leftrightarrow \cos A=\frac{3}{5}$
B sudut tumpul maka $\cos B$ (negatif).
$\sin B=\frac{7}{25}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{25^2-7^2} \\ sa &= 24 \end{align}$
$\cos B=-\frac{sa}{mi}\Leftrightarrow \cos B=-\frac{24}{25}$
$\begin{align}\cos (A-B) &= \cos A\cos B+\sin A\sin B \\ &= \frac{3}{5}\times \left( -\frac{24}{25} \right)+\frac{4}{5}\times \frac{7}{25} \\ &= \frac{-72}{125}+\frac{28}{125} \\ \cos (A-B) &= -\frac{44}{125} \end{align}$
Jawaban: D

Soal No. 15
Diketahui $\cos \alpha =\frac{3}{5}$, $\alpha $ adalah sudut lancip dan $\sin \beta =\frac{12}{13}$, $\beta $ adalah sudut tumpul, maka nilai $\tan (\alpha +\beta )$ = ….
A. $\frac{63}{16}$
B. $\frac{56}{63}$
C. $\frac{16}{63}$
D. $-\frac{16}{63}$
E. $-\frac{56}{63}$
Penyelesaian: Lihat/Tutup $\alpha $ adalah sudut lancip maka $\tan \alpha $ positif.
$\cos \alpha =\frac{3}{5}=\frac{sa}{mi}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{5^2-3^2} \\ de &= 4 \end{align}$
$\tan \alpha =\frac{de}{sa}\Leftrightarrow \tan \alpha =\frac{4}{3}$
$\beta $ adalah sudut tumpul maka $\tan \beta $ negatif.
$\sin \beta =\frac{12}{13}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{13^2-12^2} \\ sa &= 5 \end{align}$
$\tan \beta =-\frac{de}{sa}\Leftrightarrow \tan \beta =-\frac{12}{5}$
$\begin{align}\tan (\alpha +\beta ) &= \frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta } \\ &= \frac{\frac{4}{3}+\left( -\frac{12}{5} \right)}{1-\frac{4}{3}\left( -\frac{12}{5} \right)} \\ &= \frac{\frac{20}{15}-\frac{36}{15}}{1+\frac{48}{15}} \\ &= \frac{-\frac{16}{15}}{\frac{63}{15}} \\ \tan (\alpha +\beta ) &= -\frac{16}{63} \end{align}$
Jawaban: D

Soal No. 16
Diketahui $\sin \beta =\frac{12}{13}$, $\beta $ adalah sudut lancip dan $\sin \alpha =\frac{3}{5}$, $\alpha $ adalah sudut tumpul, maka nilai $\tan (\alpha -\beta )$ = ….
A. $-\frac{63}{16}$
B. $-\frac{63}{56}$
C. $\frac{16}{63}$
D. $\frac{56}{63}$
E. $\frac{63}{16}$
Penyelesaian: Lihat/Tutup $\beta $ adalah sudut lancip maka $\tan \beta $ positif.
$\sin \beta =\frac{12}{13}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{13^2-12^2} \\ sa &= 5 \end{align}$
$\tan \beta =\frac{de}{sa}\Leftrightarrow \tan \beta =\frac{12}{5}$
$\alpha $ adalah sudut tumpul maka $\tan \alpha $ negatif.
$\sin \alpha =\frac{3}{5}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{5^2-3^2} \\ sa &= 4 \end{align}$
$\tan \alpha =-\frac{de}{sa}\Leftrightarrow \tan \alpha =-\frac{3}{4}$
$\begin{align}\tan (\alpha -\beta ) &= \frac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta } \\ &= \frac{-\frac{3}{4}-\frac{12}{5}}{1+\left( -\frac{3}{4} \right).\frac{12}{5}} \\ &= \frac{-\frac{15}{20}-\frac{48}{20}}{1-\frac{36}{20}} \\ &= \frac{-\frac{63}{20}}{-\frac{16}{20}} \\ \tan (\alpha -\beta ) &= \frac{63}{16} \end{align}$
Jawaban: E

Soal No. 17
Diketahui $p$ dan $q$ adalah sudut lancip dan $p-q=30^\circ $. Jika $\cos p\sin q=\frac{1}{6}$, maka nilai dari $\sin p\cos q$ = ….
A. $\frac{1}{6}$
B. $\frac{2}{6}$
C. $\frac{3}{6}$
D. $\frac{4}{6}$
E. $\frac{5}{6}$
Penyelesaian: Lihat/Tutup $\begin{align}p-q &= 30^\circ \\ \sin (p-q) &= \sin 30^\circ \\ \sin p\cos q-\cos p\sin q &= \frac{1}{2} \\ \sin p\cos q-\frac{1}{6} &= \frac{1}{2} \\ \sin p\cos q &= \frac{1}{2}+\frac{1}{6} \\ \sin p\cos q &= \frac{3}{6}+\frac{1}{6} \\ \sin p\cos q &= \frac{4}{6} \end{align}$
Jawaban: D

Soal No. 18
Pada segitiga ABC lancip, diketahui $\cos A=\frac{4}{5}$ dan $\sin B=\frac{12}{13}$, maka $\sin C$ = ….
A. $\frac{20}{65}$
B. $\frac{36}{65}$
C. $\frac{56}{65}$
D. $\frac{60}{65}$
E. $\frac{63}{65}$
Penyelesaian: Lihat/Tutup $\cos A=\frac{4}{5}=\frac{sa}{mi}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{5^2-4^2} \\ de &= 3 \end{align}$
$\sin A=\frac{de}{mi}\Leftrightarrow \sin A=\frac{3}{5}$
$\sin B=\frac{12}{13}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{13^2-12^2} \\ sa &= 5 \end{align}$
$\cos B=\frac{sa}{mi}\Leftrightarrow \cos B=\frac{5}{13}$
Segitiga ABC maka:
$\begin{align}A+B+C &= 180^\circ \\ C &= 180^\circ -(A+B) \\ \sin C &= \sin (180^\circ -(A+B)) \\ &= \sin (A+B) \\ &= \sin A\cos B+\cos A\sin B \\ &= \frac{3}{5}.\frac{5}{13}+\frac{4}{5}.\frac{12}{13} \\ &= \frac{15}{65}+\frac{48}{65} \\ \sin C &= \frac{63}{65} \end{align}$
Jawaban: E

Soal No. 19
Pada segitiga PQR diketahui $\sin P=\frac{3}{5}$ dan $\cos Q=\frac{12}{13}$ maka nilai $\sin R$ = ….
A. $\frac{56}{65}$
B. $\frac{16}{65}$
C. $-\frac{6}{65}$
D. $-\frac{16}{65}$
E. $-\frac{56}{65}$
Penyelesaian: Lihat/Tutup $\sin P=\frac{3}{5}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{5^2-3^2} \\ sa &= 4 \end{align}$
$\cos P=\frac{sa}{mi}\Leftrightarrow \cos P=\frac{4}{5}$
$\cos Q=\frac{12}{13}=\frac{sa}{mi}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{13^2-12^2} \\ de &= 5 \end{align}$
$\sin Q=\frac{de}{mi}\Leftrightarrow \sin Q=\frac{5}{13}$
Segitiga PQR maka:
$\begin{align}P+Q+R &= 180^\circ \\ R &= 180^\circ -(P+Q) \\ \sin R &= \sin (180^\circ -(P+Q)) \\ &= \sin (P+Q) \\ &= \sin P\cos Q+\cos P\sin Q \\ &= \frac{3}{5}.\frac{12}{13}+\frac{4}{5}.\frac{5}{13} \\ &= \frac{36}{65}+\frac{20}{65} \\ \sin R &= \frac{56}{65} \end{align}$
Jawaban: A

Soal No. 20
Dari suatu segitiga ABC diketahui bahwa $\sin A=\frac{1}{2}\sqrt{2}$ dan $\cos B=\frac{1}{2}$. Nilai $\sin C$ adalah ….
A. $\frac{1}{4}\sqrt{2}$
B. $\frac{1}{4}\sqrt{6}$
C. $\frac{1}{4}\sqrt{2}+\sqrt{6}$
D. $\frac{1}{4}(\sqrt{2}+\sqrt{6})$
E. $\frac{1}{4}\sqrt{12}$
Penyelesaian: Lihat/Tutup $\sin A=\frac{\sqrt{2}}{2}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{2^2-(\sqrt{2})^2} \\ sa &= \sqrt{2} \end{align}$
$\cos A=\frac{sa}{mi}\Leftrightarrow \cos A=\frac{\sqrt{2}}{2}$
$\cos B=\frac{1}{2}=\frac{sa}{mi}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{2^2-1^2} \\ de &= \sqrt{3} \end{align}$
$\sin B=\frac{de}{mi}\Leftrightarrow \sin B=\frac{\sqrt{3}}{2}$
Segitiga ABC maka:
$\begin{align}A+B+C &= 180^\circ \\ C &= 180^\circ -(A+B) \\ \sin C &= \sin (180^\circ -(A+B)) \\ &= sin(A+B) \\ &= sinAcosB+cosAsinB \\ &= \frac{\sqrt{2}}{2}.\frac{1}{2}+\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\ \sin C &= \frac{1}{4}(\sqrt{2}+\sqrt{6}) \end{align}$
Jawaban: D

Soal No. 21
Dari suatu segitiga ABC diketahui bahwa $\sin A=\frac{1}{2}\sqrt{3}$ dan $\cos B=\frac{1}{2}\sqrt{2}$. Nilai $\sin C$ adalah ….
A. $\frac{1}{4}\sqrt{2}$
B. $\frac{1}{4}\sqrt{6}$
C. $\frac{1}{4}(\sqrt{2}+\sqrt{6})$
D. $\frac{1}{4}\sqrt{2}+\sqrt{6}$
E. $\frac{1}{4}\sqrt{12}$
Penyelesaian: Lihat/Tutup $\sin A=\frac{\sqrt{3}}{2}=\frac{de}{mi}$
$\begin{align}sa &= \sqrt{mi^2-de^2} \\ &= \sqrt{2^2-(\sqrt{3})^2} \\ sa &= 1 \end{align}$
$\cos A=\frac{sa}{mi}\Leftrightarrow \cos A=\frac{1}{2}$
$\cos B=\frac{\sqrt{2}}{2}=\frac{sa}{mi}$
$\begin{align}de &= \sqrt{mi^2-sa^2} \\ &= \sqrt{2^2-(\sqrt{2})^2} \\ de &= \sqrt{2} \end{align}$
$\sin B=\frac{de}{mi}\Leftrightarrow \sin B=\frac{\sqrt{2}}{2}$
$\begin{align}A+B+C &= 180^\circ \\ C &= 180^\circ -(A+B) \\ \sin C &= \sin (180^\circ -(A+B)) \\ &= \sin (A+B) \\ &= \sin A\cos B+\cos A\sin B \\ &= \frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}+\frac{1}{2}.\frac{\sqrt{2}}{2} \\ &= \frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\ \sin C &= \frac{1}{4}(\sqrt{6}+\sqrt{2}) \end{align}$
Jawaban: C

Soal No. 22
Nilai $\sin 48^\circ \cos 12^\circ +\cos 48^\circ \sin 12^\circ $ sama dengan ….
A. $\frac{1}{2}$
B. $\frac{1}{2}\sqrt{2}$
C. $\frac{1}{2}\sqrt{3}$
D. $\frac{1}{2}\sqrt{6}$
E. $\frac{1}{3}\sqrt{3}$
Penyelesaian: Lihat/Tutup $\sin 48^\circ \cos 12^\circ +\cos 48^\circ \sin 12^\circ $
= $\sin (48^\circ +12^\circ )$
= $\sin 60^\circ $
= $\frac{1}{2}\sqrt{3}$
Jawaban: C

Soal No. 23
Jika $\cot 49^\circ =\frac{1}{a}$ maka $\sec 4^\circ $ = ….
A. $\frac{\sqrt{2(a^2+1)}}{a+1}$
B. $\frac{2\sqrt{(a^2+1)}}{a+1}$
C. $\frac{\sqrt{2(a^2+1)}}{a+1}$
D. $\frac{a-1}{\sqrt{2(a^2+1)}}$
E. $\frac{a+1}{\sqrt{2(a^2+1)}}$
Penyelesaian: Lihat/Tutup $\begin{align}\cot 49^\circ &= \frac{1}{a} \\ \tan 49^\circ &= a \\ \tan (45^\circ +4^\circ ) &= a \\ \frac{\tan 45^\circ +\tan 4^\circ }{1-\tan 45^\circ .\tan 4^\circ } &= a \\ \frac{1+\tan 4^\circ }{1-1.\tan 4^\circ } &= a \\ a-a\tan 4^\circ &= 1+\tan 4^\circ \\ -a\tan 4^\circ -\tan 4^\circ &= 1-a \\ a\tan 4^\circ +\tan 4^\circ &= a-1 \\ (a+1)\tan 4^\circ &= a-1 \\ \tan 4^\circ &= \frac{a-1}{a+1}=\frac{de}{sa} \end{align}$
$\begin{align}\sec 4^\circ &= \frac{mi}{sa} \\ &= \frac{\sqrt{de^2+sa^2}}{sa} \\ &= \frac{\sqrt{{{(a-1)}^{2}}+{{(a+1)}^{2}}}}{a+1} \\ &= \frac{\sqrt{a^2-2a+1+a^2+2a+1}}{a+1} \\ &= \frac{\sqrt{2a^2+2}}{a+1} \\ \sec 4^\circ &= \frac{\sqrt{2(a^2+1)}}{a+1} \end{align}$
Jawaban: A

Soal No. 24
Jika $\tan \alpha =1$ dan $\tan \beta =\frac{1}{3}$ dengan $\alpha $ dan $\beta $ sudut lancip, maka $\sin (\alpha -\beta )$ = ….
A. $\frac{2}{3}\sqrt{5}$
B. $\frac{1}{5}\sqrt{5}$
C. $\frac{1}{2}$
D. $\frac{2}{5}$
E. $\frac{1}{5}$
Penyelesaian: Lihat/Tutup $\tan \alpha =1\Leftrightarrow \tan \alpha =\frac{1}{1}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{1^2+1^2} \\ mi &= \sqrt{2} \end{align}$
$\sin \alpha =\frac{de}{mi}\Leftrightarrow \sin \alpha =\frac{1}{\sqrt{2}}$
$\cos \alpha =\frac{sa}{mi}\Leftrightarrow \cos \alpha =\frac{1}{\sqrt{2}}$
$\tan \beta =\frac{1}{3}=\frac{de}{sa}$
$\begin{align}mi &= \sqrt{de^2+sa^2} \\ &= \sqrt{{{1}^{2}}+3^2} \\ mi &= \sqrt{10} \end{align}$
$\sin \beta =\frac{de}{mi}\Leftrightarrow \sin \beta =\frac{1}{\sqrt{10}}$
$\cos \beta =\frac{sa}{mi}\Leftrightarrow \cos \beta =\frac{3}{\sqrt{10}}$
$\begin{align}\sin (\alpha -\beta ) &= \sin \alpha \cos \beta -\cos \alpha \sin \beta \\ &= \frac{1}{\sqrt{2}}.\frac{3}{\sqrt{10}}-\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{10}} \\ &= \frac{3}{\sqrt{20}}-\frac{1}{\sqrt{20}} \\ &= \frac{2}{\sqrt{20}} \\ &= \frac{2}{2\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}} \\ \sin (\alpha -\beta ) &= \frac{1}{5}\sqrt{5} \end{align}$
Jawaban: B

Soal No. 25
Diketahui $\cos (x-y)=\frac{4}{5}$ dan $\sin x\sin y=\frac{3}{10}$. Nilai $\tan x\tan y$ = ….
A. $-\frac{5}{3}$
B. $-\frac{4}{3}$
C. $-\frac{3}{5}$
D. $\frac{3}{5}$
E. $\frac{5}{3}$
Penyelesaian: Lihat/Tutup $\begin{align}\cos (x-y) &= \frac{4}{5} \\ \cos x\cos y+\sin x\sin y &= \frac{4}{5} \\ \cos x\cos y+\frac{3}{10} &= \frac{4}{5} \\ \cos x\cos y &= \frac{4}{5}-\frac{3}{10} \\ \cos x\cos y &= \frac{5}{10} \end{align}$
$\begin{align}\tan x\tan y &= \frac{\sin x}{\cos x}.\frac{\sin y}{\cos y} \\ &= \frac{\sin x\sin y}{\cos x\cos y} \\ &= \frac{\frac{3}{10}}{\frac{5}{10}} \\ \tan x\tan y &= \frac{3}{5} \end{align}$
Jawaban: D

Soal No. 26
Jika $\alpha $ dan $\beta $ sudut lancip, $\cos (\alpha -\beta )=\frac{1}{2}\sqrt{3}$ dan $\cos \alpha \cos \beta =\frac{1}{2}$, maka $\frac{\cos (\alpha +\beta )}{\cos (\alpha -\beta )}$ = ….
A. $2-\sqrt{3}$
B. $1-\frac{1}{3}\sqrt{3}$
C. $3-2\sqrt{3}$
D. $1-\frac{1}{2}\sqrt{3}$
E. $\frac{2}{3}\sqrt{3}-1$
Penyelesaian: Lihat/Tutup $\begin{align}\cos (\alpha -\beta ) &= \frac{1}{2}\sqrt{3} \\ \cos \alpha \cos \beta +\sin \alpha \sin \beta &= \frac{1}{2}\sqrt{3} \\ \frac{1}{2}+\sin \alpha \sin \beta &= \frac{1}{2}\sqrt{3} \\ \sin \alpha \sin \beta &= \frac{1}{2}\sqrt{3}-\frac{1}{2} \end{align}$
$\begin{align}\cos (\alpha +\beta ) &= \cos \alpha \cos \beta -\sin \alpha \sin \beta \\ &= \frac{1}{2}-\left( \frac{1}{2}\sqrt{3}-\frac{1}{2} \right) \\ &= 1-\frac{1}{2}\sqrt{3} \\ \cos (\alpha +\beta ) &= \frac{2-\sqrt{3}}{2} \end{align}$
$\begin{align}\frac{\cos (\alpha +\beta )}{\cos (\alpha -\beta )} &= \frac{\frac{2-\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} \\ &= \frac{2-\sqrt{3}}{2}\times \frac{2}{\sqrt{3}} \\ &= \frac{2-\sqrt{3}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ &= \frac{2\sqrt{3}-3}{3} \\ \frac{\cos (\alpha +\beta )}{\cos (\alpha -\beta )} &= \frac{2}{3}\sqrt{3}-1 \end{align}$
Jawaban: E

Soal No. 27
Diketahui segitiga ABC dengan $\tan A=3$, $\tan B=1$, maka nilai $\tan C$ = ….
A. 2
B. 1
C. $-\frac{1}{2}$
D. $-2$
E. $-3$
Penyelesaian: Lihat/Tutup $\tan A=3\Leftrightarrow \tan A=\frac{3}{1}=\frac{de}{sa}$
$\begin{align}A+B+C &= 180^\circ \\ C &= 180^\circ -(A+B) \\ \tan C &= \tan (180^\circ -(A+B)) \\ &= -\tan (A+B) \\ &= -\left( \frac{\tan A+\tan B}{1-\tan A\tan B} \right) \\ &= -\left( \frac{3+1}{1-3.1} \right) \\ \tan C &= 2 \end{align}$
Jawaban: A

Soal No. 28
Jika $\tan 3^\circ =p$ maka $\tan 228^\circ $ adalah ….
A. $\frac{(1-p)^2}{1-p^2}$
B. $\frac{(1-p)^2}{p^2-1}$
C. $\frac{p^2-1}{(1-p)^2}$
D. $\frac{1-p^2}{(1-p)^2}$
E. $\frac{1-p^2}{1+p^2}$
Penyelesaian: Lihat/Tutup $\begin{align}\tan 228^\circ &= \tan (225^\circ +3^\circ ) \\ &= \frac{\tan 225^\circ +\tan 3^\circ }{1-\tan 225^\circ \tan 3^\circ } \\ &= \frac{1+p}{1-1.p} \\ &= \frac{1+p}{1-p}\times \frac{1-p}{1-p} \\ \tan 228^\circ &= \frac{1-p^2}{(1-p)^2} \end{align}$
Jawaban: D

Soal No. 29
Perhatikan gambar berikut!
Soal Trigonometri Jumlah dan Selisih Dua Sudut
$\sin (x+y)$ = ….
A. $\frac{117}{125}$
B. $\frac{44}{125}$
C. $\frac{13}{125}$
D. $\frac{8}{25}$
E. $\frac{4}{5}$
Penyelesaian: Lihat/Tutup Perhatikan segitiga PSR:
$\begin{align}PS &= \sqrt{PR^2-RS^2} \\ &= \sqrt{25^2-7^2} \\ PS &= 24 \end{align}$
$\sin y=\frac{RS}{PR}\Leftrightarrow \sin y=\frac{7}{25}$
$\cos y=\frac{PS}{PR}\Leftrightarrow \cos y=\frac{24}{25}$
Perhatikan segitiga PQR:
$\begin{align}PQ &= \sqrt{PR^2-QR^2} \\ &= \sqrt{25^2-15^2} \\ PQ &= 20 \end{align}$
$\sin x=\frac{QR}{PR}=\frac{15}{25}=\frac{3}{5}$
$\cos x=\frac{PQ}{PR}=\frac{20}{25}=\frac{4}{5}$
$\begin{align}\sin (x+y) &= \sin x\cos y+\cos x\sin y \\ &= \frac{3}{5}.\frac{24}{25}+\frac{4}{5}.\frac{7}{25} \\ &= \frac{72}{125}+\frac{28}{125} \\ &= \frac{100}{125} \\ \sin (x+y) &= \frac{4}{5} \end{align}$
Jawaban: E

Soal No. 30
Seseorang mencoba menentukan tinggi nyala api di puncak tugu Monas di Jakarta dengan cara mengukur sudut lihat dari suatu tempat sejauh $a$ dari kaki tugu itu $\alpha $ dan $\beta $ seperti dalam gambar. Jika $x$ tinggi nyala api itu, maka $x$ = …
Soal Jumlah dan Selisih Dua Sudut
A. $a\sin (\alpha -\beta )$
B. $a\tan (\alpha -\beta )$
C. $a\cot (\alpha -\beta )$
D. $\frac{a\sin (\alpha -\beta )}{\sin \alpha \sin \beta }$
E. $\frac{a\sin (\alpha -\beta )}{\cos \alpha \cos \beta }$
Penyelesaian: Lihat/Tutup Soal Trigonometri Jumlah dan Selisih Dua Sudut
$\begin{align}\tan \alpha &= \frac{x+y}{a} \\ x+y &= a\tan \alpha \\ y &= a\tan \alpha -x \end{align}$
$\begin{align}\tan \beta &= \frac{y}{a} \\ \tan \beta &= \frac{a\tan \alpha -x}{a} \\ a\tan \beta &= a\tan \alpha -x \\ x &= a\tan \alpha -a\tan \beta \\ x &= a(\tan \alpha -\tan \beta ) \\ x &= a\left( \frac{\sin \alpha }{\cos \alpha }-\frac{\sin \beta }{\cos \beta } \right) \\ x &= a\left( \frac{\sin \alpha \cos \beta -\cos \alpha \sin \beta }{\cos \alpha \cos \beta } \right) \\ x &= \frac{a\sin (\alpha -\beta )}{\cos \alpha \cos \beta } \end{align}$
Jawaban: E

Semoga postingan: Soal Trigonometri Jumlah dan Selisih Dua Sudut dan Pembahasan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

Post a Comment for "Soal Trigonometri Jumlah dan Selisih Dua Sudut dan Pembahasan"