Soal Nilai Maksimum dan Minimum Fungsi Trigonometri dan Pembahasan
Hallo...! Pengunjung setia Catatan Matematika, kali ini Bang RP (Reikson Panjaitan, S.Pd) berbagi Kumpulan Soal Nilai Maksimum/Minimum Fungsi Trigonometri beserta pembahasannya. Ayo... manfaatkan website Catatan Matematika ini untuk belajar matematika secara online.
A. $-3$
B. $-2$
C. $-1$
D. 1
E. 3
$y=2\sin \left( x-\frac{\pi }{3} \right)+1$
$a=2$ dan $c=1$ maka:
$y_{\min}=-\left| a \right|+c=-\left| 2 \right|+1=-1$
Jawaban: C
A. 3
B. 6
C. 12
D. 18
E. 36
$y=\sqrt{2}\cos 3x+1$
$a=\sqrt{2}$ dan $c=1$ maka:
$y_{\max}=\left| a \right|+c=\left| \sqrt{2} \right|+1=1+\sqrt{2}=p$
$y_{\min}=-\left| a \right|+c=-\left| \sqrt{2} \right|+1=1-\sqrt{2}=q$
$\begin{align}p^2+q^2 &= (1+\sqrt{2})^2+(1-\sqrt{2})^2 \\ &= 1+2\sqrt{2}+2+1-2\sqrt{2}+2 \\ p^2+q^2 &= 6 \end{align}$
Jawaban: B
A. $x=60^\circ+k.360^\circ$; $k=0,1,2,...$
B. $x=60^\circ+k.180^\circ$; $k=0,1,2,...$
C. $x=30^\circ+k.360^\circ$; $k=0,1,2,...$
D. $x=30^\circ+k.180^\circ$; $k=0,1,2,...$
E. $x=k.360^\circ$; $k=0,1,2,...$
Mencapai nilai minimum jika:
$\cos (2x-60^\circ)=1$
$\cos (\underbrace{2x-60^\circ}_{f(x)})=\cos \underbrace{0^\circ}_{g(x)}$
$\begin{align}f(x) &= \pm g(x)+k.360^\circ \\ 2x-60^\circ &= \pm 0^\circ+k.360^\circ \\ 2x &= 60^\circ+k.360^\circ \\ x &= 30^\circ+k.180^\circ \end{align}$
Jadi, $y=4\sin x\sin (x-60^\circ)$ mencapai nilai minimum pada $x=30^\circ+k.180^\circ$; $k=0,1,2,...$
Jawaban: D
A. 3
B. 2
C. 1
D. 0
E. -2
$y=3-2\sin x\cos x$
$y=3-\sin 2x$
$y=-2\sin 2x+3$
$a=-2$ dan $c=3$ maka:
$y_{\min}=-\left| a \right|+c=-\left| -2 \right|+3=1$
Jawaban: C
A. $-8$ dan 2
B. $-1$ dan 8
C. $-2$ dan 4
D. $-8$ dan 8
E. $-2$ dan 1
$a=-9$ dan $b=6$
$\sin x=-\frac{b}{2a}=-\frac{6}{2(-9)}=\frac{1}{3}$
$-1\le \sin x\le 1$ dan $-1\le -\frac{b}{2a}=\frac{1}{3}\le 1$ maka substitusi $\sin x=-1$, $\sin x=\frac{1}{3}$ dan $\sin x=1$ ke $y=-9{\sin}^2x+6\sin x+7$.
$\sin x=-1$ maka $y_1=-9(-1)^2+6(-1)+7=-8$
$\sin x=\frac{1}{3}$ maka $y_2=-9\left( \frac{1}{3} \right)^2+6.\frac{1}{3}+7=8$
$\sin x=1$ maka $y_3=-{{9.1}^{2}}+6.1+7=4$
Jadi, $y_{\min}=-8$ dan $y_{\max}=8$.
Jawaban: D
A. $(15^\circ,-2)$
B. $(30^\circ,-2)$
C. $(45^\circ,-2)$
D. $(60^\circ,0)$
E. $(75^\circ,0)$
$a=2$ dan $b=0$
$\cos (2x-30^\circ)=-\frac{b}{2a}=-\frac{0}{2.2}=0$
$-1\le \cos (2x-30^\circ)\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\cos (2x-30^\circ)=-1$, $\cos (2x-30^\circ)=0$ dan $\cos (2x-30^\circ)=1$ ke $y=2{\cos}^2(2x-30^\circ)$.
$\cos (2x-30^\circ)=-1\to y_1=2(-1)^2=2$
$\cos (2x-30^\circ)=0\to y_2={{2.0}^{2}}=0$
$\cos (2x-30^\circ)=1\to y_3={{2.1}^{2}}=2$
Nilai $y_{\min}=0$ untuk:
$\begin{align}\cos (2x-30^\circ) &= 0 \\ \cos (2x-30^\circ) &= \cos 90^\circ \\ 2x-30^\circ &= 90^\circ \\ 2x &= 120^\circ \\ x &= 60^\circ \end{align}$
Jadi, titik minimum dari fungsi $f(x)=2{\cos}^2(2x-30^\circ)$ adalah $(60^\circ,0)$.
Jawaban: D
A. $\infty $
B. 2
C. 1
D. 0
E. $-1$
$a=-1$, $b=0$
$\sin x=-\frac{b}{2a}=-\frac{0}{2(-1)}=0$
$-1\le \sin x\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin x=-1$, $\sin x=0$ dan $\sin x=1$ ke $y=-{\sin}^2x+1$.
$\sin x=-1\to y_1=1-(-1)^2=0$
$\sin x=0\to y_2=1-0^2=1$
$\sin x=-1\to y_3=1-1^2=0$
Jadi, nilai $y_{\max}=1$
Jawaban: C
A. $\sqrt{2}$ dan $-\sqrt{2}$
B. $\sqrt{3}$ dan $-\sqrt{3}$
C. 2 dan $-2$
D. $\sqrt{5}$ dan $-\sqrt{5}$
E. $\sqrt{7}$ dan $-\sqrt{7}$
$f(x)=2\sin x-\cos x$
$f(x)=-\cos x+2\sin x$
$a=-1$, $b=2$ dan $c=0$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-1)^2+2^2}+0 \\ f_{\max} &= \sqrt{5} \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{(-1)^2+2^2}+0 \\ f_{\min} &= -\sqrt{5} \end{align}$
Jawaban: D
A. $-2$
B. $-1$
C. 0
D. 1
E. 2
$k(x)=2\cos x+\sqrt{5}\sin x-1$
$a=2$, $b=\sqrt{5}$ dan $c=-1$
$\begin{align}k_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{2^2+(\sqrt{5})^2}-1 \\ k_{\max} &= 2 \end{align}$
Jawaban: E
A. 15
B. 10
C. 5
D. 3
E. 2
Perhatikan penyebut:
$\cos x-\sqrt{3}\sin x+3$
$a=1$, $b=-\sqrt{3}$ dan $c=3$
Nilai optimum $\cos x-\sqrt{3}\sin x+3$ adalah:
$\sqrt{a^2+b^2}+c=\sqrt{1^2+(-\sqrt{3})^2}+3=5$
dan
$-\sqrt{a^2+b^2}+c=-\sqrt{1^2+(-\sqrt{3})^2}+3=1$
Substitusi nilai-nilai tersebut ke $f(x)=\frac{15}{\cos x-\sqrt{3}\sin x+3}$ maka:
$f(x)=\frac{15}{5}=3$ (minimum)
dan
$f(x)=\frac{15}{1}=15$ (maksimum)
Jadi, nilai $f_{/min} =3$.
Jawaban: D
A. $\infty $
B. 360
C. 3
D. 1
E. 0
$y=3\sin x$
$a=3$ dan $c=0$ maka:
$y_{\max}=|a|+c=|3|+0=3$
Jawaban: C
A. $y_{\min}=-7$ untuk $k=70^\circ+k.90^\circ$
B. $y_{\max}=-3$ untuk $x=25^\circ+k.90^\circ$
C. $y_{\max}=-3$ untuk $x=20^\circ+k.90^\circ$
D. $y_{\min}=-7$ untuk $x=20^\circ+k.90^\circ$
E. $y_{\max}=-3$ untuk $x=70^\circ+k.90^\circ$
$a=-2$ dan $c=-5$ maka:
$y_{\max}=\left| a \right|+c=\left| -2 \right|-5=-3$
Untuk
$\begin{align}\sin (4x-10^\circ) &= -1 \\ \sin (4x-10^\circ) &= \sin 270^\circ \\ 4x-10^\circ &= 270^\circ+k.360^\circ \\ 4x &= 280^\circ+k.360^\circ \\ x &= 70^\circ+k.90^\circ \end{align}$
$y_{\min}=-\left| a \right|+c=-\left| -2 \right|-5=-7$
Untuk
$\begin{align}\sin (4x-10^\circ) &= 1 \\ \sin (4x-10^\circ) &= \sin 90^\circ \\ 4x-10^\circ &= 90^\circ+k.360^\circ \\ 4x &= 100^\circ+k.360^\circ \\ x &= 25^\circ+k.90^\circ \end{align}$
Jadi, nilai $y=-2\sin (4x-10^\circ)-5$ akan mempunyai $y_{\max}=-3$ untuk $x=70^\circ+k.90^\circ$.
Jawaban: E
A. 1
B. 2
C. 3
D. 4
E. 5
$x^2=(\cos A-2\sin B)^2$
$x^2={\cos}^2A-4\cos A\sin B+4{\sin}^2B$
$y=\sin A+2\cos B$
$y^2=(\sin A+2\cos B)^2$
$y^2={\sin}^2A+4\sin A\cos B+4{\cos}^2B$
$x^2+y^2$ = ${\cos}^2A+{\sin}^2A$ + $4\sin A\cos B$ $-4\cos A+\sin B$ + $4{\sin}^2B+4{\cos}^2B$
$x^2+y^2$ = 1 + $4(\sin A\cos B-\cos A\sin B)$ + $4({\sin}^2B+{\cos}^2B)$
$x^2+y^2$ = 1 + $4\sin (A-B)$ + 4
$x^2+y^2$ = $4\sin (A-B)$ + 5
Agar $x^2+y^2$ maka $\sin (A-B)=-1$ maka:
$(x^2+y^2)_{\min}=4.(-1)+5=1$
Jawaban: A
A. 4
B. 5
C. 6
D. 7
E. 8
$x^2={{(\sin \alpha +\sqrt{3}\sin \beta )}^{2}}$
$x^2={\sin}^2\alpha +2\sqrt{3}\sin \alpha \sin \beta +3{\sin}^2\beta $
$y=\cos \alpha +\sqrt{3}\cos \beta $ maka:
$y^2={{(\cos \alpha +\sqrt{3}\cos \beta )}^{2}}$
$y^2={\cos}^2\alpha +2\sqrt{3}\cos \alpha \cos \beta +3{\cos}^2\beta $
$x^2+y^2$ = ${\sin}^2\alpha +2\sqrt{3}\sin \alpha \sin \beta +3{\sin}^2\beta $ + ${\cos}^2\alpha +2\sqrt{3}\cos \alpha \cos \beta +3{\cos}^2\beta $
$x^2+y^2$ = ${\sin}^2\alpha +{\cos}^2\beta $ + $2\sqrt{3}(\cos \alpha \cos \beta +\sin \alpha \sin \beta )$ + $3({\sin}^2\alpha +{\cos}^2\beta )$
$x^2+y^2=1+2\sqrt{3}\cos (\alpha -\beta )+3$
$x^2+y^2=\underbrace{2\sqrt{3}}_{a}\cos (\alpha -\beta )+\underbrace{4}_{c}$
$\begin{align}(x^2+y^2)_{\max} &= \left| a \right|+c \\ &= \left| 2\sqrt{3} \right|+4 \\ a+b\sqrt{3} &= 4+2\sqrt{3} \end{align}$
Diperoleh $a=4$ dan $b=2$ maka:
$a+b=4+2=6$
Jawaban: C
A. $y_{\min}=1$ untuk $x=60^\circ$
B. $y_{\min}=1$ untuk $x=335^\circ$
C. $y_{\min}=1$ untuk $x=345^\circ$
D. $y_{\min}=4$ untuk $x=65^\circ$
E. $y_{\min}=4$ untuk $x=165^\circ$
$a=-3$, $b=0$
$\sin (2x-40^\circ)=-\frac{b}{2a}=-\frac{0}{2(-3)}=0$
$-1\le \sin (2x-40^\circ)\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin (2x-40^\circ)=-1$, $\sin (2x-40^\circ)=0$ dan $\sin (2x-40^\circ)=1$ ke $y=-3{\sin}^2(2x-40)+4$.
$\sin (2x-40^\circ)=-1$ maka $y_1=-3.(-1)^2+4=1$
$\sin (2x-40^\circ)=0$ maka $y_2=-3.0^2+4=4$
$\sin (2x-40^\circ)=-1$ maka $y_2=-3.1^2+4=1$
Nilai $y_{\min}=1$ untuk:
Kasus 1.
$\begin{align}\sin (2x-40^\circ) &= 1 \\ \sin (2x-40^\circ) &= \sin 90^\circ \\ 2x-40^\circ &= 90^\circ+k.360^\circ \\ 2x &= 130^\circ+k.360^\circ \\ x &= 65^\circ+k.180^\circ \end{align}$
$k=0\to x=65^\circ$
$k=1\to x=245^\circ$
Kasus 2.
$\begin{align}\sin (2x-40^\circ) &= -1 \\ \sin (2x-40^\circ) &= \sin 270^\circ \\ 2x-40^\circ &= 270^\circ+k.360^\circ \\ 2x &= 310^\circ+k.360^\circ \\ x &= 155^\circ+k.180^\circ \end{align}$
$k=0\to x=155^\circ$
$k=1\to x=335^\circ$
Jadi, $y_{\min}=1$ untuk $x=335^\circ$.
Jawaban: B
A. $\frac{3}{4}$ dan 1
B. $\frac{1}{4}$ dan $\frac{3}{4}$
C. $\frac{1}{4}$ dan 1
D. $-\frac{1}{4}$ dan $\frac{1}{4}$
E. $-\frac{3}{4}$ dan 1
$a+b={\cos}^2x+{\sin}^2x=1$
$\begin{align}ab &= {\cos}^2x.{\sin}^2x \\ &= (\sin x\cos x)^2 \\ &= \left( \frac{1}{2}\sin 2x \right)^2 \\ ab &= \frac{1}{4}{\sin}^22x \end{align}$
$\begin{align}f(x) &= {\cos}^6x+{\sin}^6x \\ y &= ({\cos}^2x)^3+({\sin}^2x)^3 \\ &= a^3+b^3 \\ &= (a+b)^3-3ab(a+b) \\ &= 1^3-3.\frac{1}{4}{\sin}^22x.1 \\ y &= -\frac{3}{4}{\sin}^22x+1 \end{align}$
$a=-\frac{3}{4}$ dan $b=0$
$\sin 2x=-\frac{b}{2a}=-\frac{0}{2\left( -\frac{3}{4} \right)}=0$
$-1\le \sin 2x\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin 2x=-1$, $\sin 2x=0$ dan $\sin 2x=1$ ke $y=-\frac{3}{4}{\sin}^22x+1$.
$\sin 2x=-1\to y_1=-\frac{3}{4}.(-1)^2+1=\frac{1}{4}$
$\sin 2x=0\to y_2=-\frac{3}{4}{{.0}^{2}}+1=1$
$\sin 2x=1\to y_1=-\frac{3}{4}{{.1}^{2}}+1=\frac{1}{4}$
Jadi, nilai $y_{\min}=\frac{1}{4}$ dan $y_{\max}=1$.
Jawaban: C
A. $-2$
B. $-1$
C. 0
D. 1
E. 2
$h:x\to \sin x+\sqrt{3}\cos x$
$h:x\to \sqrt{3}\cos x+\sin x$
$a=\sqrt{3}$, $b=1$ dan $c=0$
$\begin{align}h_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(\sqrt{3})^2+1^2}+0 \\ h_{\max} &= 2 \end{align}$
Jawaban: E
A. 0
B. $-1$
C. $-5$
D. $-9$
E. $-25$
$a=3$, $b=4$ dan $c=c$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ 1 &= \sqrt{3^2+4^2}+c \\ 1 &= 5+c \\ -4 &= c \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{3^2+4^2}-4 \\ &= -5-4 \\ f_{\min} &= -9 \end{align}$
Jawaban: D
A. 1
B. $3-2\sqrt{2}$
C. $1-\sqrt{2}$
D. $\sqrt{2}-3$
E. $2\sqrt{2}-3$
$y=\frac{1-\sqrt{2}}{\cos x+\sin x+1}$
Perhatikan penyebut:
$\cos x+\sin x+1$
$a=1$, $b=1$ dan $c=1$
Nilai optimum $\cos x+\sin x+1$ adalah:
$\sqrt{a^2+b^2}+c=\sqrt{1^2+1^2}+1=1+\sqrt{2}$
dan
$-\sqrt{a^2+b^2}+c=-\sqrt{1^2+1^2}+1=1-\sqrt{2}$
Substitusi nilai-nilai tersebut ke $y=\frac{1-\sqrt{2}}{\cos x+\sin x+1}$ maka:
$\begin{align}y &= \frac{1-\sqrt{2}}{1+\sqrt{2}} \\ &= \frac{1-\sqrt{2}}{1+\sqrt{2}}\times \frac{1-\sqrt{2}}{1-\sqrt{2}} \\ &= \frac{3-2\sqrt{2}}{-1} \\ y &= 2\sqrt{2}-3\,(\text{minimum}) \end{align}$
dan
$y=\frac{1-\sqrt{2}}{1-\sqrt{2}}=1\,(\text{maksimum})$
Jadi, nilai $y_{/min}=2\sqrt{2}-3$.
Jawaban: E
A. 4
B. 16
C. 36
D. 64
E. 84
$y_{\max}$ jika nilai $15\sin x-8\cos x+25$ minimum maka:
$\begin{align}y_{\max} &= \frac{m}{(15\sin x-8\cos x+25)_{\min}} \\ 2 &= \frac{m}{-\sqrt{15^2+(-8)^2}+25} \\ 2 &= \frac{m}{8} \\ m &= 16 \end{align}$
Jawaban: B
A. 3
B. 4
C. 5
D. 6
E. 7
$y=2-5\sin \frac{\pi x}{6}\Leftrightarrow y=-5\sin \frac{\pi x}{6}+2$
$a=-5$ dan $c=2$ maka:
$y_{\max}=\left| a \right|+c=\left| -5 \right|+2=7=p$
Nilai $y=2-5\sin \frac{\pi x}{6}$ maksimum jika:
$\begin{align}\sin \frac{\pi x}{6} &= -1 \\ \sin \frac{\pi x}{6} &= \sin \left( -\frac{\pi }{2} \right) \\ \frac{\pi x}{6} &= -\frac{\pi }{2} \\ 2\pi x &= -6\pi \\ x &= \frac{-6\pi }{2\pi } \\ x=-3 &= q \end{align}$
$p+q=7+(-3)=4$
Jawaban: B
A. 0,5 dan 2,5
B. 0,5 dan 4,5
C. 1 dan 5
D. 1,5 dan 3,5
E. -0,5 dan 1,5
$f(x)=2\left[ 1+\cos 2x\cos (2x-60^\circ) \right]$
$f(x)=2\left[ 1+\frac{1}{2}\left( \cos (4x-60^\circ)+\cos 60^\circ \right) \right]$
$f(x)=2+\left( \cos (4x-60^\circ)+\cos 60^\circ \right)$
$f(x)=2+\cos (4x-60^\circ)+\frac{1}{2}$
$f(x)=\cos (4x-60^\circ)+\frac{5}{2}$
$a=1$ dan $c=\frac{5}{2}$
$f_{\min}=-\left| a \right|+c=-\left| 1 \right|+\frac{5}{2}=1,5$
$f_{\max}=\left| a \right|+c=\left| 1 \right|+\frac{5}{2}=3,5$
Jawaban: D
A. $5$ dan $\frac{5}{7}$
B. $\frac{5}{3}$ dan $\frac{4}{7}$
C. $\frac{4}{3}$ dan $-4$
D. $\frac{5}{3}$ dan $-\frac{5}{4}$
E. $\frac{5}{7}$ dan $-\frac{5}{2}$
$\begin{align}y_1 &= \frac{5}{(3\sin x+4)_{\max}} \\ &= \frac{5}{\left| 3 \right|+4} \\ y_1 &= \frac{5}{7} \end{align}$
$\begin{align}y_2 &= \frac{5}{(3\sin x+4)_{\min}} \\ &= \frac{5}{-\left| 3 \right|+4} \\ y_2 &= 5 \end{align}$
Jadi, $y_{\max}=5$ dan $y_{\min}=\frac{5}{7}$
Jawaban: A
A. $-3$
B. $-1$
C. 2
D. 5
E. 8
$f(x)= {^4\log (2{\cos}^2x-1-6\cos x+9)}$
$f(x)= {^4\log (2{\cos}^2x-6\cos x+8)}$
Untuk $\cos x=\frac{-b}{2a}=\frac{-(-6)}{2.2}=\frac{3}{2}$ (tidak memenuhi).
Untuk $\cos x=1$ maka:
$\begin{align}f(x) &= {^4\log (2{\cos}^2x-6\cos x+8)} \\ f &= {^4\log (2.1^2-6.1+8)} \\ &= {^4\log 4} \\ f &= 1 \end{align}$
Untuk $\cos x=-1$ maka:
$\begin{align}f(x) &= {^4\log (2{\cos}^2x-6\cos x+8)} \\ f &= {^4\log (2(-1)^2-6(-1)+8)} \\ &= {^4\log 16} \\ &= {^4\log 4^2} \\ f &= 2 \end{align}$
Jadi, $f_{\max}=2$ dan $f_{\min}=1$
$g(x)=2\cos 4x+4\sin 2x+m$
$g(x)=2(1-2{\sin}^22x)+4\sin 2x+m$
$g(x)=2-4{\sin}^22x+4\sin 2x+m$
$g(x)=-4{\sin}^22x+4\sin 2x+m+2$
Untuk $\sin 2x=-\frac{b}{2a}=-\frac{4}{2(-4)}=\frac{1}{2}$ (memenuhi $-1\le \sin 2x\le 1$) dan $a<0$ maka:
$\begin{align}g(x) &= -4{\sin}^22x+4\sin 2x+m+2 \\ g_{\max} &= -4\left( \frac{1}{2} \right)^2+4.\frac{1}{2}+m+2 \\ &= -1+2+m+2 \\ g_{\max} &= m+3 \end{align}$
$\begin{align}f_{\max}.f_{\min} &= g_{\max} \\ 2.1 &= m+3 \\ 2 &= m+3 \\ -1 &= m \end{align}$
Jawaban: B
A. $\frac{1}{2}\sqrt{2}$
B. $\sqrt{2}$
C. 2
D. $2\sqrt{2}$
E. $3\sqrt{2}$
$f(x)=\sin x-\cos x$
$f(x)=-\cos x+\sin x$
$a=-1$, $b=1$ dan $c=0$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-1)^2+1^2}+0 \\ f_{\max} &= \sqrt{2} \end{align}$
Jawaban: B
A. 4
B. $2\sqrt{2}+1$
C. 3
D. $\sqrt{2}+1$
E. 2
$h(x)=1+\sin 2x+\cos 2x$
$h(x)=\cos 2x+\sin 2x+1$
$a=1$, $b=1$ dan $c=1$
$\begin{align}h_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{1^2+1^2}+1 \\ h_{\max} &= \sqrt{2}+1 \end{align}$
Jawaban: D
A. $3\sqrt{2}$ dan $2\sqrt{2}$
B. $3\sqrt{2}$ dan $\sqrt{2}$
C. $2\sqrt{2}$ dan $\sqrt{2}$
D. $2\sqrt{2}$ dan $-\sqrt{2}$
E. $3\sqrt{2}$ dan $-3\sqrt{2}$
$f(x)=\sin x+\cos x+2\sqrt{2}$
$f(x)=\cos x+\sin x+2\sqrt{2}$
$a=1$, $b=1$ dan $c=2\sqrt{2}$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{1^2+1^2}+2\sqrt{2} \\ &= \sqrt{2}+2\sqrt{2} \\ f_{\max} &= 3\sqrt{2} \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{1^2+1^2}+2\sqrt{2} \\ &= -\sqrt{2}+2\sqrt{2} \\ f_{\min} &= \sqrt{2} \end{align}$
Jadi, nilai $f_{\max}=3\sqrt{2}$ dan $f_{\min}=\sqrt{2}$.
Jawaban: B
A. $-2\sqrt{2}$
B. $-2$
C. $-\sqrt{2}$
D. $\sqrt{2}$
E. $2\sqrt{2}$
$y=\sin x+\cos x-\sqrt{2}$
$y=\cos x+\sin x-\sqrt{2}$
$a=1$, $b=1$ dan $c=-\sqrt{2}$
$\begin{align}y_{\max}-y_{\min} &= 2\sqrt{a^2+b^2} \\ &= 2\sqrt{1^2+1^2} \\ y_{\max}-y_{\min} &= 2\sqrt{2} \end{align}$
Jawaban: E
A. $-6$
B. $-3$
C. 0
D. 3
E. 6
$g(x)=(\sqrt{3}\sin x+\cos x)(3\sqrt{3}\cos x-3\sin x)$
$g(x)=9\sin x\cos x-3\sqrt{3}{\sin}^2x+3\sqrt{3}{\cos}^2x-3\sin x\cos x$
$g(x)=6\sin x\cos x+3\sqrt{3}({\cos}^2x-{\sin}^2x)$
$g(x)=3.2\sin x\cos x+3\sqrt{3}\cos 2x$
$g(x)=3\sqrt{3}\cos 2x+3\sin 2x$
$a=3\sqrt{3}$, $b=3$ dan $c=0$
$\begin{align}g_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{(3\sqrt{3})^2+3^2}+0 \\ g_{\min} &= -6 \end{align}$
Jawaban: A
A. $65^\circ$
B. $102^\circ$
C. $208^\circ$
D. $272^\circ$
E. $300^\circ$
$a=3$ dan $c=2p$ maka:
$y_{\max}=\left| a \right|+c=3+2p$
$y_{\min}=-\left| a \right|+c=-3+2p$
$\begin{align}y_{\max} &= 4y_{\min} \\ 3+2p &= 4(-3+2p) \\ 3+2p &= -12+8p \\ -6p &= -15 \\ p &= \frac{-15}{-6} \\ p &= \frac{5}{2} \end{align}$
Nilai $y_{\min}$ maka:
$\begin{align}\cos (px+20^\circ) &= -1 \\ \cos \left( \frac{5}{2}x+20^\circ \right) &= \cos 180^\circ \\ \frac{5}{2}x+20^\circ &= 180^\circ+k.360^\circ \\ \frac{5}{2}x &= 160^\circ+k.360^\circ \\ x &= 64^\circ+k.144^\circ \end{align}$
$k=0\to x=64^\circ$
$k=1\to x=208^\circ$
Jawaban: C
A. maksimum 3 dan minimum 1
B. maksimum $\frac{3}{2}$ dan minimum $\frac{1}{2}$
C. maksimum 1 dan minimum 0
D. maksimum $\frac{9}{4}$ dan minimum $\frac{1}{4}$
E. maksimum $\frac{5}{4}$ dan minimum $\frac{3}{4}$
$\begin{align}y &= \cos x\cos \left( x-\frac{\pi }{3} \right)+\frac{3}{4} \\ &= \frac{1}{2}\left[ \cos \left( 2x-\frac{\pi }{3} \right)+\cos \frac{\pi }{3} \right]+\frac{3}{4} \\ &= \frac{1}{2}\left[ \cos \left( 2x-\frac{\pi }{3} \right)+\frac{1}{2} \right]+\frac{3}{4} \\ &= \frac{1}{2}\cos \left( 2x-\frac{\pi }{3} \right)+\frac{1}{4}+\frac{3}{4} \\ y &= \frac{1}{2}\cos \left( 2x-\frac{\pi }{3} \right)+1 \end{align}$
$a=\frac{1}{2}$ dan $c=1$ maka:
$y_{\max}=\left| a \right|+c=\left| \frac{1}{2} \right|+1=\frac{3}{2}$
$y_{\min}=-\left| a \right|+c=-\left| \frac{1}{2} \right|+1=\frac{1}{2}$
Jawaban: B
A. $17^\circ$
B. $112^\circ$
C. $193^\circ$
D. $246^\circ$
E. $305^\circ$
$a=2$, $b=-2\sqrt{3}$ dan $c=2p-1$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{2^2+(-2\sqrt{3})^2}+2p-1 \\ y_{\max} &= 2p+3 \end{align}$
$\begin{align}y_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{2^2+(-2\sqrt{3})^2}+2p-1 \\ y_{\min} &= 2p-5 \end{align}$
$\begin{align}2+y_{\max} &= 3y_{\min} \\ 2+2p+3 &= 3(2p-5) \\ 2p+5 &= 6p-15 \\ -4p &= -20 \\ p &= 5 \end{align}$
$y=2\cos px-2\sqrt{3}\sin px+2p-1$
$y=2\cos 5x-2\sqrt{3}\sin 5x+9$
$a=2$ dan $b=-2\sqrt{3}$ maka:
$\theta $ dan titik $(a,b)=(2,-2\sqrt{3})$ di kuadran IV
$\begin{align}\theta &= {\tan}^{-1}\left( \frac{b}{a} \right) \\ &= {\tan}^{-1}\left( \frac{-2\sqrt{3}}{2} \right) \\ &= {\tan}^{-1}\left( -\sqrt{3} \right) \\ \theta &= 330^\circ \end{align}$
$\begin{align}k &= \sqrt{a^2+b^2} \\ &= \sqrt{2^2+(-2\sqrt{3})^2} \\ k &= 4 \end{align}$
$\begin{align}y &= 2\cos 5x-2\sqrt{3}\sin 5x+9 \\ &= k\cos (5x-\theta )+9 \\ y &= 4\cos (5x-330^\circ)+9 \end{align}$
Nilai $y$ minimum jika:
$\begin{align}\cos (5x-330^\circ) &= -1 \\ \cos (5x-330^\circ) &= \cos 180^\circ \\ 5x-330^\circ &= 180^\circ+k.360^\circ \\ 5x &= 510^\circ+k.360^\circ \\ x &= 102^\circ+k.72^\circ \end{align}$
$k=-1\to x=30^\circ$
$k=0\to x=102^\circ$
$k=1\to x=174^\circ$
$k=2\to x=246^\circ$
$k=3\to x=318^\circ$
Jadi, $y$ akan minimum untuk $x=246^\circ$.
Jawaban: D
Keliling $\Delta ABC$ adalah 8 cm, panjang sisi AC terkecil yang memungkinkan adalah ….
A. $\frac{8}{2-\sqrt{2}}$
B. $8(\sqrt{2}-1)$
C. $\frac{8}{2+\sqrt{2}}$
D. $8(\sqrt{2}+1)$
E. 4
$\cos \alpha =\frac{AB}{AC}\Leftrightarrow AB=AC\cos \alpha $
$\begin{align}\text{Keliling }\Delta ABC &= 8 \\ AC+AB+BC &= 8 \\ AC+AC\cos \alpha +AC\sin \alpha &= 8 \\ AC(1+\cos \alpha +\sin \alpha ) &= 8 \\ \end{align}$
$AC=\frac{8}{\cos \alpha +\sin \alpha +1}$
$\begin{align}AC_{\min} &= \frac{8}{(\cos \alpha +\sin \alpha +1)_{\max}} \\ &= \frac{8}{\sqrt{1^2+1^2}+1} \\ &= \frac{8}{\sqrt{2}+1}\times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\ AC_{\min} &= 8(\sqrt{2}-1) \end{align}$
Jawaban: B
A. 0,5
B. 2,3
C. 2,8
D. 3,1
E. 3,3
$a=p-1$, $b=2p-3$ dan $c=3q+3$ maka:
$\frac{\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ y_{\min} &= -\sqrt{a^2+b^2}+c \end{align}}{\begin{align}y_{\max}+y_{\min} &= 2c \\ 2+7 &= 2(3q+3) \\ 9 &= 6q+6 \\ 6q &= 3 \\ q &= \frac{1}{2} \end{align}}+$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ 7 &= \sqrt{(p-1)^2+(2p-3)^2}+3q+3 \\ 7 &= \sqrt{5p^2-14p+10}+3.\frac{1}{2}+3 \\ 7 &= \sqrt{5p^2-14p+10}+\frac{9}{2} \\ \frac{5}{2} &= \sqrt{5p^2-14p+10} \\ \frac{25}{4} &= 5p^2-14p+10 \\ 25 &= 20p^2-56p+40 \\ 0 &= 20p^2-56p+15 \end{align}$
$p_1+p_2=-\frac{-56}{20}=2,8$
$q+p_1+p_2=0,5+2,8=3,3$
Jawaban: E
A. $\frac{1}{5}\sqrt{58}$
B. $\frac{3}{5}\sqrt{10}$
C. $\frac{1}{5}\sqrt{41}$
D. $\frac{4}{5}\sqrt{2}$
E. $\frac{4}{5}\sqrt{3}$
$\alpha =A+B$ maka:
$\cos (A+B)=\frac{3}{5}\Leftrightarrow \cos \alpha =\frac{3}{5}=\frac{sa}{mi}$
$\begin{align}\sin \alpha &= \frac{de}{mi} \\ &= \frac{\sqrt{mi^2-de^2}}{mi} \\ &= \frac{\sqrt{5^2-3^2}}{5} \\ \sin \alpha &= \frac{4}{5} \end{align}$
$\begin{align}B &= \alpha -A \\ \sin B &= \sin (\alpha -A) \\ &= \sin \alpha \cos A-\cos \alpha \sin A \\ \sin B &= \frac{4}{5}\cos A-\frac{3}{5}\sin A \end{align}$
$\begin{align}y &= \cos A+\sin B \\ &= \cos A+\frac{4}{5}\cos A-\frac{3}{5}\sin A \\ y &= \frac{9}{5}\cos A-\frac{3}{5}\sin A \end{align}$
$a=\frac{9}{5}$, $b=-\frac{3}{5}$ dan $c=0$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{\left( \frac{9}{5} \right)^2+\left( -\frac{3}{5} \right)^2}+0 \\ &= \sqrt{\frac{81}{25}+\frac{9}{25}} \\ &= \sqrt{\frac{90}{25}} \\ y_{\max} &= \frac{3\sqrt{10}}{5} \end{align}$
Jawaban: B
A. $\frac{5}{2}\sqrt{3}$
B. $2\sqrt{3}$
C. $\frac{3}{2}\sqrt{3}$
D. $\sqrt{\frac{3}{2}}$
E. $-5\sqrt{\frac{3}{2}}$
$a=3$, $b=-\sqrt{3}$ dan $c=-\frac{1}{2}\sqrt{3}$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{3^2+(-\sqrt{3})^2}-\frac{1}{2}\sqrt{3} \\ &= 2\sqrt{3}-\frac{1}{2}\sqrt{3} \\ y_{\max} &= \frac{3}{2}\sqrt{3} \end{align}$
Jawaban: C
A. 0
B. 3
C. 6
D. 9
E. 10
$a=3$, $b=4$ dan $c=-2$ maka:
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{3^2+4^2}-2 \\ y_{\max} &= 3 \end{align}$
Jawaban: B
A. 12
B. 14
C. $8+\sqrt{3}$
D. $8-\sqrt{3}$
E. $\frac{1}{2}\sqrt{20}$
$y=-\sqrt{13}\cos 3x+\sqrt{3}\sin 3x+8$
$a=-\sqrt{13}$ dan $b=\sqrt{3}$ dan $c=8$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-\sqrt{13})^2+(\sqrt{3})^2}+8 \\ y_{\max} &= 12 \end{align}$
Jawaban: A
A. minimum = $-2$ untuk $x=330^\circ$
B. maksimum = 2 untuk $x=150^\circ$
C. minimum = 2 untuk $x=150^\circ$
D. maksimum = 6 untuk $x=330^\circ$
E. maksimum = 6 untuk $x=150^\circ$
$a=-\sqrt{3}$, $b=1$ dan $c=4$
$\theta $ dan titik $(a,b)=(-\sqrt{3},1)$ di kuadran II.
$\begin{align}\theta &= {\tan}^{-1}\left( \frac{b}{a} \right) \\ &= {\tan}^{-1}\left( \frac{1}{-\sqrt{3}} \right) \\ &= {\tan}^{-1}\left( -\frac{1}{3}\sqrt{3} \right) \\ \theta &= 150^\circ \end{align}$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-\sqrt{3})^2+1^2}+4 \\ y_{\max} &= 6 \end{align}$
Nilai $y_{\max}$ untuk:
$\begin{align}\cos (x-\theta) &= 1 \\ \cos (x-150^\circ) &= \cos 0^\circ \\ x-150^\circ &= k.360^\circ \\ x &= 150^\circ+k.360^\circ \end{align}$
$k=0\to x=150^\circ$
$\begin{align}y_{\min} &= \sqrt{a^2+b^2}+c \\ &= -\sqrt{(-\sqrt{3})^2+1^2}+4 \\ y_{\min} &= 2 \end{align}$
Nilai $y_{\min}$ untuk:
$\begin{align}\cos (x-\theta ) &= -1 \\ \cos (x-150^\circ) &= \cos 180^\circ \\ x-150^\circ &= 180^\circ+k.360^\circ \\ x &= 330^\circ+k.360^\circ \end{align}$
$k=0\to x=330^\circ$
Jadi, $y_{\min}=2$ untuk $x=330^\circ$ dan $y_{\max}=6$ untuk $x=150^\circ$.
Jawaban: E
Tata Cara Belajar:
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cek jawaban kamu dengan pembahasan yang telah disediakan, dengan cara:
klik "LIHAT/TUTUP:".
Soal No. 1
Nilai minimum $f(x)=2\sin \left( x-\frac{\pi }{3} \right)+1$ adalah ….A. $-3$
B. $-2$
C. $-1$
D. 1
E. 3
Penyelesaian: Lihat/Tutup
Ingat, $y=a\sin b(x-\theta )+c$ maka $y_{\min}=-\left| a \right|+c$.$y=2\sin \left( x-\frac{\pi }{3} \right)+1$
$a=2$ dan $c=1$ maka:
$y_{\min}=-\left| a \right|+c=-\left| 2 \right|+1=-1$
Jawaban: C
Soal No. 2
Diketahui $f(x)=\sqrt{2}\cos 3x+1$. Jika nilai maksimum dan minimum $f(x)$ berturut-turut adalah $p$ dan $q$, maka nilai $p^2+q^2$ adalah ….A. 3
B. 6
C. 12
D. 18
E. 36
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\sin b(x-\theta )+c$ maka $y_{\max}=\left| a \right|+c$ dan $y_{\min}=-\left| a \right|+c$$y=\sqrt{2}\cos 3x+1$
$a=\sqrt{2}$ dan $c=1$ maka:
$y_{\max}=\left| a \right|+c=\left| \sqrt{2} \right|+1=1+\sqrt{2}=p$
$y_{\min}=-\left| a \right|+c=-\left| \sqrt{2} \right|+1=1-\sqrt{2}=q$
$\begin{align}p^2+q^2 &= (1+\sqrt{2})^2+(1-\sqrt{2})^2 \\ &= 1+2\sqrt{2}+2+1-2\sqrt{2}+2 \\ p^2+q^2 &= 6 \end{align}$
Jawaban: B
Soal No. 3
$y=4\sin x\sin (x-60^\circ)$ mencapai nilai minimum pada ….A. $x=60^\circ+k.360^\circ$; $k=0,1,2,...$
B. $x=60^\circ+k.180^\circ$; $k=0,1,2,...$
C. $x=30^\circ+k.360^\circ$; $k=0,1,2,...$
D. $x=30^\circ+k.180^\circ$; $k=0,1,2,...$
E. $x=k.360^\circ$; $k=0,1,2,...$
Penyelesaian: Lihat/Tutup
$\begin{align}y &= 4\sin x\sin (x-60^\circ) \\ &= 4.-\frac{1}{2}\left( \cos (x+x-60^\circ)-\cos (x-x+60^\circ) \right) \\ &= -2\left( \cos (2x-60^\circ)-\cos 60^\circ \right) \\ &= -2\left( \cos (2x-60^\circ)-\frac{1}{2} \right) \\ y &= -2\cos (2x-60^\circ)+1 \end{align}$Mencapai nilai minimum jika:
$\cos (2x-60^\circ)=1$
$\cos (\underbrace{2x-60^\circ}_{f(x)})=\cos \underbrace{0^\circ}_{g(x)}$
$\begin{align}f(x) &= \pm g(x)+k.360^\circ \\ 2x-60^\circ &= \pm 0^\circ+k.360^\circ \\ 2x &= 60^\circ+k.360^\circ \\ x &= 30^\circ+k.180^\circ \end{align}$
Jadi, $y=4\sin x\sin (x-60^\circ)$ mencapai nilai minimum pada $x=30^\circ+k.180^\circ$; $k=0,1,2,...$
Jawaban: D
Soal No. 4
Nilai terkecil yang dapat dicapai oleh $y=3-2\sin x\cos x$ adalah ….A. 3
B. 2
C. 1
D. 0
E. -2
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\sin b(x+\theta )+c$ maka $y_{\min}=-|a|+c$.$y=3-2\sin x\cos x$
$y=3-\sin 2x$
$y=-2\sin 2x+3$
$a=-2$ dan $c=3$ maka:
$y_{\min}=-\left| a \right|+c=-\left| -2 \right|+3=1$
Jawaban: C
Soal No. 5
Nilai minimum dan maksimum dari $y=-9{{\sin }^{2}}x+6\sin x+7$ masing-masing adalah ….A. $-8$ dan 2
B. $-1$ dan 8
C. $-2$ dan 4
D. $-8$ dan 8
E. $-2$ dan 1
Penyelesaian: Lihat/Tutup
$y=-9{\sin}^2x+6\sin x+7$$a=-9$ dan $b=6$
$\sin x=-\frac{b}{2a}=-\frac{6}{2(-9)}=\frac{1}{3}$
$-1\le \sin x\le 1$ dan $-1\le -\frac{b}{2a}=\frac{1}{3}\le 1$ maka substitusi $\sin x=-1$, $\sin x=\frac{1}{3}$ dan $\sin x=1$ ke $y=-9{\sin}^2x+6\sin x+7$.
$\sin x=-1$ maka $y_1=-9(-1)^2+6(-1)+7=-8$
$\sin x=\frac{1}{3}$ maka $y_2=-9\left( \frac{1}{3} \right)^2+6.\frac{1}{3}+7=8$
$\sin x=1$ maka $y_3=-{{9.1}^{2}}+6.1+7=4$
Jadi, $y_{\min}=-8$ dan $y_{\max}=8$.
Jawaban: D
Soal No. 6
Titik minimum dari fungsi $f(x)=2{\cos}^2(2x-30^\circ)$ adalah ….A. $(15^\circ,-2)$
B. $(30^\circ,-2)$
C. $(45^\circ,-2)$
D. $(60^\circ,0)$
E. $(75^\circ,0)$
Penyelesaian: Lihat/Tutup
$y=f(x)=2{\cos}^2(2x-30^\circ)$$a=2$ dan $b=0$
$\cos (2x-30^\circ)=-\frac{b}{2a}=-\frac{0}{2.2}=0$
$-1\le \cos (2x-30^\circ)\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\cos (2x-30^\circ)=-1$, $\cos (2x-30^\circ)=0$ dan $\cos (2x-30^\circ)=1$ ke $y=2{\cos}^2(2x-30^\circ)$.
$\cos (2x-30^\circ)=-1\to y_1=2(-1)^2=2$
$\cos (2x-30^\circ)=0\to y_2={{2.0}^{2}}=0$
$\cos (2x-30^\circ)=1\to y_3={{2.1}^{2}}=2$
Nilai $y_{\min}=0$ untuk:
$\begin{align}\cos (2x-30^\circ) &= 0 \\ \cos (2x-30^\circ) &= \cos 90^\circ \\ 2x-30^\circ &= 90^\circ \\ 2x &= 120^\circ \\ x &= 60^\circ \end{align}$
Jadi, titik minimum dari fungsi $f(x)=2{\cos}^2(2x-30^\circ)$ adalah $(60^\circ,0)$.
Jawaban: D
Soal No. 7
Nilai maksimum dari fungsi $y=1-{\sin}^2x$ sama dengan ….A. $\infty $
B. 2
C. 1
D. 0
E. $-1$
Penyelesaian: Lihat/Tutup
$y=1-{\sin}^2x\Leftrightarrow y=-{\sin}^2x+1$$a=-1$, $b=0$
$\sin x=-\frac{b}{2a}=-\frac{0}{2(-1)}=0$
$-1\le \sin x\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin x=-1$, $\sin x=0$ dan $\sin x=1$ ke $y=-{\sin}^2x+1$.
$\sin x=-1\to y_1=1-(-1)^2=0$
$\sin x=0\to y_2=1-0^2=1$
$\sin x=-1\to y_3=1-1^2=0$
Jadi, nilai $y_{\max}=1$
Jawaban: C
Soal No. 8
Nilai maksimum dan minimum dari $f(x)=2\sin x-\cos x$ berturut-turut adalah ….A. $\sqrt{2}$ dan $-\sqrt{2}$
B. $\sqrt{3}$ dan $-\sqrt{3}$
C. 2 dan $-2$
D. $\sqrt{5}$ dan $-\sqrt{5}$
E. $\sqrt{7}$ dan $-\sqrt{7}$
Penyelesaian: Lihat/Tutup
Ingat: $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$ dan $y_{\min}=-\sqrt{a^2+b^2}+c$.$f(x)=2\sin x-\cos x$
$f(x)=-\cos x+2\sin x$
$a=-1$, $b=2$ dan $c=0$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-1)^2+2^2}+0 \\ f_{\max} &= \sqrt{5} \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{(-1)^2+2^2}+0 \\ f_{\min} &= -\sqrt{5} \end{align}$
Jawaban: D
Soal No. 9
Nilai maksimum dari $k(x)=2\cos x+\sqrt{5}\sin x-1$ adalah ….A. $-2$
B. $-1$
C. 0
D. 1
E. 2
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$.$k(x)=2\cos x+\sqrt{5}\sin x-1$
$a=2$, $b=\sqrt{5}$ dan $c=-1$
$\begin{align}k_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{2^2+(\sqrt{5})^2}-1 \\ k_{\max} &= 2 \end{align}$
Jawaban: E
Soal No. 10
Nilai minimum dari fungsi $f(x)=\frac{15}{\cos x-\sqrt{3}\sin x+3}$ adalah ….A. 15
B. 10
C. 5
D. 3
E. 2
Penyelesaian: Lihat/Tutup
$f(x)=\frac{15}{\cos x-\sqrt{3}\sin x+3}$Perhatikan penyebut:
$\cos x-\sqrt{3}\sin x+3$
$a=1$, $b=-\sqrt{3}$ dan $c=3$
Nilai optimum $\cos x-\sqrt{3}\sin x+3$ adalah:
$\sqrt{a^2+b^2}+c=\sqrt{1^2+(-\sqrt{3})^2}+3=5$
dan
$-\sqrt{a^2+b^2}+c=-\sqrt{1^2+(-\sqrt{3})^2}+3=1$
Substitusi nilai-nilai tersebut ke $f(x)=\frac{15}{\cos x-\sqrt{3}\sin x+3}$ maka:
$f(x)=\frac{15}{5}=3$ (minimum)
dan
$f(x)=\frac{15}{1}=15$ (maksimum)
Jadi, nilai $f_{/min} =3$.
Jawaban: D
Soal No. 11
Nilai maksimum dari $y=3\sin x$, sama dengan …A. $\infty $
B. 360
C. 3
D. 1
E. 0
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\sin b(x+\theta )+c$ maka $y_{\max}=-|a|+c$.$y=3\sin x$
$a=3$ dan $c=0$ maka:
$y_{\max}=|a|+c=|3|+0=3$
Jawaban: C
Soal No. 12
Nilai $y=-2\sin (4x-10^\circ)-5$ akan mempunyai ….A. $y_{\min}=-7$ untuk $k=70^\circ+k.90^\circ$
B. $y_{\max}=-3$ untuk $x=25^\circ+k.90^\circ$
C. $y_{\max}=-3$ untuk $x=20^\circ+k.90^\circ$
D. $y_{\min}=-7$ untuk $x=20^\circ+k.90^\circ$
E. $y_{\max}=-3$ untuk $x=70^\circ+k.90^\circ$
Penyelesaian: Lihat/Tutup
$y=-2\sin (4x-10^\circ)-5$$a=-2$ dan $c=-5$ maka:
$y_{\max}=\left| a \right|+c=\left| -2 \right|-5=-3$
Untuk
$\begin{align}\sin (4x-10^\circ) &= -1 \\ \sin (4x-10^\circ) &= \sin 270^\circ \\ 4x-10^\circ &= 270^\circ+k.360^\circ \\ 4x &= 280^\circ+k.360^\circ \\ x &= 70^\circ+k.90^\circ \end{align}$
$y_{\min}=-\left| a \right|+c=-\left| -2 \right|-5=-7$
Untuk
$\begin{align}\sin (4x-10^\circ) &= 1 \\ \sin (4x-10^\circ) &= \sin 90^\circ \\ 4x-10^\circ &= 90^\circ+k.360^\circ \\ 4x &= 100^\circ+k.360^\circ \\ x &= 25^\circ+k.90^\circ \end{align}$
Jadi, nilai $y=-2\sin (4x-10^\circ)-5$ akan mempunyai $y_{\max}=-3$ untuk $x=70^\circ+k.90^\circ$.
Jawaban: E
Soal No. 13
Diketahui $x=\cos A-2\sin B$ dan $y=\sin A+2\cos B$. Nilai minimum dari $x^2+y^2$ = ….A. 1
B. 2
C. 3
D. 4
E. 5
Penyelesaian: Lihat/Tutup
$x=\cos A-2\sin B$ maka:$x^2=(\cos A-2\sin B)^2$
$x^2={\cos}^2A-4\cos A\sin B+4{\sin}^2B$
$y=\sin A+2\cos B$
$y^2=(\sin A+2\cos B)^2$
$y^2={\sin}^2A+4\sin A\cos B+4{\cos}^2B$
$x^2+y^2$ = ${\cos}^2A+{\sin}^2A$ + $4\sin A\cos B$ $-4\cos A+\sin B$ + $4{\sin}^2B+4{\cos}^2B$
$x^2+y^2$ = 1 + $4(\sin A\cos B-\cos A\sin B)$ + $4({\sin}^2B+{\cos}^2B)$
$x^2+y^2$ = 1 + $4\sin (A-B)$ + 4
$x^2+y^2$ = $4\sin (A-B)$ + 5
Agar $x^2+y^2$ maka $\sin (A-B)=-1$ maka:
$(x^2+y^2)_{\min}=4.(-1)+5=1$
Jawaban: A
Soal No. 14
Diketahui sistem persamaan $x=\sin \alpha +\sqrt{3}\sin \beta $ dan $y=\cos \alpha +\sqrt{3}\cos \beta $. Jika nilai maksimum dari $x^2+y^2$ adalah $a+b\sqrt{3}$ maka nilai $a+b$ adalah ….A. 4
B. 5
C. 6
D. 7
E. 8
Penyelesaian: Lihat/Tutup
$x=\sin \alpha +\sqrt{3}\sin \beta $ maka:$x^2={{(\sin \alpha +\sqrt{3}\sin \beta )}^{2}}$
$x^2={\sin}^2\alpha +2\sqrt{3}\sin \alpha \sin \beta +3{\sin}^2\beta $
$y=\cos \alpha +\sqrt{3}\cos \beta $ maka:
$y^2={{(\cos \alpha +\sqrt{3}\cos \beta )}^{2}}$
$y^2={\cos}^2\alpha +2\sqrt{3}\cos \alpha \cos \beta +3{\cos}^2\beta $
$x^2+y^2$ = ${\sin}^2\alpha +2\sqrt{3}\sin \alpha \sin \beta +3{\sin}^2\beta $ + ${\cos}^2\alpha +2\sqrt{3}\cos \alpha \cos \beta +3{\cos}^2\beta $
$x^2+y^2$ = ${\sin}^2\alpha +{\cos}^2\beta $ + $2\sqrt{3}(\cos \alpha \cos \beta +\sin \alpha \sin \beta )$ + $3({\sin}^2\alpha +{\cos}^2\beta )$
$x^2+y^2=1+2\sqrt{3}\cos (\alpha -\beta )+3$
$x^2+y^2=\underbrace{2\sqrt{3}}_{a}\cos (\alpha -\beta )+\underbrace{4}_{c}$
$\begin{align}(x^2+y^2)_{\max} &= \left| a \right|+c \\ &= \left| 2\sqrt{3} \right|+4 \\ a+b\sqrt{3} &= 4+2\sqrt{3} \end{align}$
Diperoleh $a=4$ dan $b=2$ maka:
$a+b=4+2=6$
Jawaban: C
Soal No. 15
Fungsi $f(x)=-3{\sin}^2(2x-40^\circ)+4$ akan mempunyai ….A. $y_{\min}=1$ untuk $x=60^\circ$
B. $y_{\min}=1$ untuk $x=335^\circ$
C. $y_{\min}=1$ untuk $x=345^\circ$
D. $y_{\min}=4$ untuk $x=65^\circ$
E. $y_{\min}=4$ untuk $x=165^\circ$
Penyelesaian: Lihat/Tutup
$y=-3{\sin}^2(2x-40)+4$$a=-3$, $b=0$
$\sin (2x-40^\circ)=-\frac{b}{2a}=-\frac{0}{2(-3)}=0$
$-1\le \sin (2x-40^\circ)\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin (2x-40^\circ)=-1$, $\sin (2x-40^\circ)=0$ dan $\sin (2x-40^\circ)=1$ ke $y=-3{\sin}^2(2x-40)+4$.
$\sin (2x-40^\circ)=-1$ maka $y_1=-3.(-1)^2+4=1$
$\sin (2x-40^\circ)=0$ maka $y_2=-3.0^2+4=4$
$\sin (2x-40^\circ)=-1$ maka $y_2=-3.1^2+4=1$
Nilai $y_{\min}=1$ untuk:
Kasus 1.
$\begin{align}\sin (2x-40^\circ) &= 1 \\ \sin (2x-40^\circ) &= \sin 90^\circ \\ 2x-40^\circ &= 90^\circ+k.360^\circ \\ 2x &= 130^\circ+k.360^\circ \\ x &= 65^\circ+k.180^\circ \end{align}$
$k=0\to x=65^\circ$
$k=1\to x=245^\circ$
Kasus 2.
$\begin{align}\sin (2x-40^\circ) &= -1 \\ \sin (2x-40^\circ) &= \sin 270^\circ \\ 2x-40^\circ &= 270^\circ+k.360^\circ \\ 2x &= 310^\circ+k.360^\circ \\ x &= 155^\circ+k.180^\circ \end{align}$
$k=0\to x=155^\circ$
$k=1\to x=335^\circ$
Jadi, $y_{\min}=1$ untuk $x=335^\circ$.
Jawaban: B
Soal No. 16
Nilai minimum dan maksimum fungsi $f(x)={{\cos }^{6}}x+{{\sin }^{6}}x$ secara berturut-turut adalah ….A. $\frac{3}{4}$ dan 1
B. $\frac{1}{4}$ dan $\frac{3}{4}$
C. $\frac{1}{4}$ dan 1
D. $-\frac{1}{4}$ dan $\frac{1}{4}$
E. $-\frac{3}{4}$ dan 1
Penyelesaian: Lihat/Tutup
Misalkan, $a={\cos}^2x$ dan $b={\sin}^2x$ maka:$a+b={\cos}^2x+{\sin}^2x=1$
$\begin{align}ab &= {\cos}^2x.{\sin}^2x \\ &= (\sin x\cos x)^2 \\ &= \left( \frac{1}{2}\sin 2x \right)^2 \\ ab &= \frac{1}{4}{\sin}^22x \end{align}$
$\begin{align}f(x) &= {\cos}^6x+{\sin}^6x \\ y &= ({\cos}^2x)^3+({\sin}^2x)^3 \\ &= a^3+b^3 \\ &= (a+b)^3-3ab(a+b) \\ &= 1^3-3.\frac{1}{4}{\sin}^22x.1 \\ y &= -\frac{3}{4}{\sin}^22x+1 \end{align}$
$a=-\frac{3}{4}$ dan $b=0$
$\sin 2x=-\frac{b}{2a}=-\frac{0}{2\left( -\frac{3}{4} \right)}=0$
$-1\le \sin 2x\le 1$ dan $-1\le -\frac{b}{2a}=0\le 1$ maka substitusi $\sin 2x=-1$, $\sin 2x=0$ dan $\sin 2x=1$ ke $y=-\frac{3}{4}{\sin}^22x+1$.
$\sin 2x=-1\to y_1=-\frac{3}{4}.(-1)^2+1=\frac{1}{4}$
$\sin 2x=0\to y_2=-\frac{3}{4}{{.0}^{2}}+1=1$
$\sin 2x=1\to y_1=-\frac{3}{4}{{.1}^{2}}+1=\frac{1}{4}$
Jadi, nilai $y_{\min}=\frac{1}{4}$ dan $y_{\max}=1$.
Jawaban: C
Soal No. 17
Nilai maksimum dari fungsi trigonometri $h:x\to \sin x+\sqrt{3}\cos x$ dalam interval $\left[ 0,2\pi \right]$ adalah ….A. $-2$
B. $-1$
C. 0
D. 1
E. 2
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$.$h:x\to \sin x+\sqrt{3}\cos x$
$h:x\to \sqrt{3}\cos x+\sin x$
$a=\sqrt{3}$, $b=1$ dan $c=0$
$\begin{align}h_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(\sqrt{3})^2+1^2}+0 \\ h_{\max} &= 2 \end{align}$
Jawaban: E
Soal No. 18
Diketahui $f(x)=3\cos x+4\sin x+c$, $c$ suatu konstanta. Jika nilai maksimum $f(x)$ adalah 1, maka nilai minimumnya adalah ….A. 0
B. $-1$
C. $-5$
D. $-9$
E. $-25$
Penyelesaian: Lihat/Tutup
$f(x)=3\cos x+4\sin x+c$$a=3$, $b=4$ dan $c=c$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ 1 &= \sqrt{3^2+4^2}+c \\ 1 &= 5+c \\ -4 &= c \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{3^2+4^2}-4 \\ &= -5-4 \\ f_{\min} &= -9 \end{align}$
Jawaban: D
Soal No. 19
Nilai minimum dari $f(x)=\frac{1-\sqrt{2}}{1+\sin x+\cos x}$ adalah ….A. 1
B. $3-2\sqrt{2}$
C. $1-\sqrt{2}$
D. $\sqrt{2}-3$
E. $2\sqrt{2}-3$
Penyelesaian: Lihat/Tutup
$f(x)=\frac{1-\sqrt{2}}{1+\sin x+\cos x}$$y=\frac{1-\sqrt{2}}{\cos x+\sin x+1}$
Perhatikan penyebut:
$\cos x+\sin x+1$
$a=1$, $b=1$ dan $c=1$
Nilai optimum $\cos x+\sin x+1$ adalah:
$\sqrt{a^2+b^2}+c=\sqrt{1^2+1^2}+1=1+\sqrt{2}$
dan
$-\sqrt{a^2+b^2}+c=-\sqrt{1^2+1^2}+1=1-\sqrt{2}$
Substitusi nilai-nilai tersebut ke $y=\frac{1-\sqrt{2}}{\cos x+\sin x+1}$ maka:
$\begin{align}y &= \frac{1-\sqrt{2}}{1+\sqrt{2}} \\ &= \frac{1-\sqrt{2}}{1+\sqrt{2}}\times \frac{1-\sqrt{2}}{1-\sqrt{2}} \\ &= \frac{3-2\sqrt{2}}{-1} \\ y &= 2\sqrt{2}-3\,(\text{minimum}) \end{align}$
dan
$y=\frac{1-\sqrt{2}}{1-\sqrt{2}}=1\,(\text{maksimum})$
Jadi, nilai $y_{/min}=2\sqrt{2}-3$.
Jawaban: E
Soal No. 20
Nilai maksimum dari $\frac{m}{15\sin x-8\cos x+25}$ adalah 2. Ini berarti $m$ = ….A. 4
B. 16
C. 36
D. 64
E. 84
Penyelesaian: Lihat/Tutup
$y=\frac{m}{15\sin x-8\cos x+25}$ dan $y_{\max}=2$$y_{\max}$ jika nilai $15\sin x-8\cos x+25$ minimum maka:
$\begin{align}y_{\max} &= \frac{m}{(15\sin x-8\cos x+25)_{\min}} \\ 2 &= \frac{m}{-\sqrt{15^2+(-8)^2}+25} \\ 2 &= \frac{m}{8} \\ m &= 16 \end{align}$
Jawaban: B
Soal No. 21
Fungsi $f(x)=2-5\sin \frac{\pi x}{6}$ untuk $-5\le x\le 1$ mempunyai nilai maksimum $p$ di titik $x=q$. Nilai $p+q$ = ….A. 3
B. 4
C. 5
D. 6
E. 7
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\sin b(x-\theta )+c$ maka $y_{\max}=\left| a \right|+c$.$y=2-5\sin \frac{\pi x}{6}\Leftrightarrow y=-5\sin \frac{\pi x}{6}+2$
$a=-5$ dan $c=2$ maka:
$y_{\max}=\left| a \right|+c=\left| -5 \right|+2=7=p$
Nilai $y=2-5\sin \frac{\pi x}{6}$ maksimum jika:
$\begin{align}\sin \frac{\pi x}{6} &= -1 \\ \sin \frac{\pi x}{6} &= \sin \left( -\frac{\pi }{2} \right) \\ \frac{\pi x}{6} &= -\frac{\pi }{2} \\ 2\pi x &= -6\pi \\ x &= \frac{-6\pi }{2\pi } \\ x=-3 &= q \end{align}$
$p+q=7+(-3)=4$
Jawaban: B
Soal No. 22
Nilai minimum dan maksimum fungsi $f(x)=2\left[ 1+\cos 2x\cos 2\left( x-\frac{\pi }{6} \right) \right]$ berturut-turut adalah ….A. 0,5 dan 2,5
B. 0,5 dan 4,5
C. 1 dan 5
D. 1,5 dan 3,5
E. -0,5 dan 1,5
Penyelesaian: Lihat/Tutup
$f(x)=2\left[ 1+\cos 2x\cos 2\left( x-\frac{\pi }{6} \right) \right]$$f(x)=2\left[ 1+\cos 2x\cos (2x-60^\circ) \right]$
$f(x)=2\left[ 1+\frac{1}{2}\left( \cos (4x-60^\circ)+\cos 60^\circ \right) \right]$
$f(x)=2+\left( \cos (4x-60^\circ)+\cos 60^\circ \right)$
$f(x)=2+\cos (4x-60^\circ)+\frac{1}{2}$
$f(x)=\cos (4x-60^\circ)+\frac{5}{2}$
$a=1$ dan $c=\frac{5}{2}$
$f_{\min}=-\left| a \right|+c=-\left| 1 \right|+\frac{5}{2}=1,5$
$f_{\max}=\left| a \right|+c=\left| 1 \right|+\frac{5}{2}=3,5$
Jawaban: D
Soal No. 23
Nilai maksimum dan minimum berturut-turut dari fungsi $f(x)=\frac{5}{3\sin x+4}$ adalah ….A. $5$ dan $\frac{5}{7}$
B. $\frac{5}{3}$ dan $\frac{4}{7}$
C. $\frac{4}{3}$ dan $-4$
D. $\frac{5}{3}$ dan $-\frac{5}{4}$
E. $\frac{5}{7}$ dan $-\frac{5}{2}$
Penyelesaian: Lihat/Tutup
$y=\frac{5}{3\sin x+4}$ nilai optimum $y$ adalah:$\begin{align}y_1 &= \frac{5}{(3\sin x+4)_{\max}} \\ &= \frac{5}{\left| 3 \right|+4} \\ y_1 &= \frac{5}{7} \end{align}$
$\begin{align}y_2 &= \frac{5}{(3\sin x+4)_{\min}} \\ &= \frac{5}{-\left| 3 \right|+4} \\ y_2 &= 5 \end{align}$
Jadi, $y_{\max}=5$ dan $y_{\min}=\frac{5}{7}$
Jawaban: A
Soal No. 24
Hasil kali nilai maksimum dan nilai minimum dari $f(x)= {^4\log (\cos 2x-6\cos x+9)}$ sama dengan nilai maksimum dari $g(x)=2\cos 4x+4\sin 2x+m$ maka $m$ = ….A. $-3$
B. $-1$
C. 2
D. 5
E. 8
Penyelesaian: Lihat/Tutup
$f(x)= {^4\log (\cos 2x-6\cos x+9)}$$f(x)= {^4\log (2{\cos}^2x-1-6\cos x+9)}$
$f(x)= {^4\log (2{\cos}^2x-6\cos x+8)}$
Untuk $\cos x=\frac{-b}{2a}=\frac{-(-6)}{2.2}=\frac{3}{2}$ (tidak memenuhi).
Untuk $\cos x=1$ maka:
$\begin{align}f(x) &= {^4\log (2{\cos}^2x-6\cos x+8)} \\ f &= {^4\log (2.1^2-6.1+8)} \\ &= {^4\log 4} \\ f &= 1 \end{align}$
Untuk $\cos x=-1$ maka:
$\begin{align}f(x) &= {^4\log (2{\cos}^2x-6\cos x+8)} \\ f &= {^4\log (2(-1)^2-6(-1)+8)} \\ &= {^4\log 16} \\ &= {^4\log 4^2} \\ f &= 2 \end{align}$
Jadi, $f_{\max}=2$ dan $f_{\min}=1$
$g(x)=2\cos 4x+4\sin 2x+m$
$g(x)=2(1-2{\sin}^22x)+4\sin 2x+m$
$g(x)=2-4{\sin}^22x+4\sin 2x+m$
$g(x)=-4{\sin}^22x+4\sin 2x+m+2$
Untuk $\sin 2x=-\frac{b}{2a}=-\frac{4}{2(-4)}=\frac{1}{2}$ (memenuhi $-1\le \sin 2x\le 1$) dan $a<0$ maka:
$\begin{align}g(x) &= -4{\sin}^22x+4\sin 2x+m+2 \\ g_{\max} &= -4\left( \frac{1}{2} \right)^2+4.\frac{1}{2}+m+2 \\ &= -1+2+m+2 \\ g_{\max} &= m+3 \end{align}$
$\begin{align}f_{\max}.f_{\min} &= g_{\max} \\ 2.1 &= m+3 \\ 2 &= m+3 \\ -1 &= m \end{align}$
Jawaban: B
Soal No. 25
Diketahui $f(x)=\sin x-\cos x$. Untuk sembarang nilai $x$, maka nilai maksimum untuk $f(x)$ adalah ….A. $\frac{1}{2}\sqrt{2}$
B. $\sqrt{2}$
C. 2
D. $2\sqrt{2}$
E. $3\sqrt{2}$
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$.$f(x)=\sin x-\cos x$
$f(x)=-\cos x+\sin x$
$a=-1$, $b=1$ dan $c=0$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-1)^2+1^2}+0 \\ f_{\max} &= \sqrt{2} \end{align}$
Jawaban: B
Soal No. 26
Nilai maksimum dari fungsi $h(x)=1+\sin 2x+\cos 2x$ adalah ….A. 4
B. $2\sqrt{2}+1$
C. 3
D. $\sqrt{2}+1$
E. 2
Penyelesaian: Lihat/Tutup
Ingat: $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$.$h(x)=1+\sin 2x+\cos 2x$
$h(x)=\cos 2x+\sin 2x+1$
$a=1$, $b=1$ dan $c=1$
$\begin{align}h_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{1^2+1^2}+1 \\ h_{\max} &= \sqrt{2}+1 \end{align}$
Jawaban: D
Soal No. 27
Nilai maksimum dan nilai minimum dari $f(x)=\sin x+\cos x+2\sqrt{2}$ adalah ….A. $3\sqrt{2}$ dan $2\sqrt{2}$
B. $3\sqrt{2}$ dan $\sqrt{2}$
C. $2\sqrt{2}$ dan $\sqrt{2}$
D. $2\sqrt{2}$ dan $-\sqrt{2}$
E. $3\sqrt{2}$ dan $-3\sqrt{2}$
Penyelesaian: Lihat/Tutup
Ingat: $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$ dan $y_{\min}=-\sqrt{a^2+b^2}+c$.$f(x)=\sin x+\cos x+2\sqrt{2}$
$f(x)=\cos x+\sin x+2\sqrt{2}$
$a=1$, $b=1$ dan $c=2\sqrt{2}$
$\begin{align}f_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{1^2+1^2}+2\sqrt{2} \\ &= \sqrt{2}+2\sqrt{2} \\ f_{\max} &= 3\sqrt{2} \end{align}$
$\begin{align}f_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{1^2+1^2}+2\sqrt{2} \\ &= -\sqrt{2}+2\sqrt{2} \\ f_{\min} &= \sqrt{2} \end{align}$
Jadi, nilai $f_{\max}=3\sqrt{2}$ dan $f_{\min}=\sqrt{2}$.
Jawaban: B
Soal No. 28
Selisih nilai maksimum dan terhadap nilai minimum dari $y=\sin x+\cos x-\sqrt{2}$ untuk $0^\circ\le x\le 360^\circ$ sama dengan ….A. $-2\sqrt{2}$
B. $-2$
C. $-\sqrt{2}$
D. $\sqrt{2}$
E. $2\sqrt{2}$
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\cos x+b\sin x+c$ maka $y_{\max}=\sqrt{a^2+b^2}+c$ dan $y_{\min}=-\sqrt{a^2+b^2}+c$.$y=\sin x+\cos x-\sqrt{2}$
$y=\cos x+\sin x-\sqrt{2}$
$a=1$, $b=1$ dan $c=-\sqrt{2}$
$\begin{align}y_{\max}-y_{\min} &= 2\sqrt{a^2+b^2} \\ &= 2\sqrt{1^2+1^2} \\ y_{\max}-y_{\min} &= 2\sqrt{2} \end{align}$
Jawaban: E
Soal No. 29
Jika $g(x)=(\sqrt{3}\sin x+\cos x)(3\sqrt{3}\cos x-3\sin x)$, maka nilai minimum dari $g(x)$ adalah ….A. $-6$
B. $-3$
C. 0
D. 3
E. 6
Penyelesaian: Lihat/Tutup
Ingat, jika $y=a\cos x+b\sin x+c$ maka $y_{\min}=-\sqrt{a^2+b^2}+c$.$g(x)=(\sqrt{3}\sin x+\cos x)(3\sqrt{3}\cos x-3\sin x)$
$g(x)=9\sin x\cos x-3\sqrt{3}{\sin}^2x+3\sqrt{3}{\cos}^2x-3\sin x\cos x$
$g(x)=6\sin x\cos x+3\sqrt{3}({\cos}^2x-{\sin}^2x)$
$g(x)=3.2\sin x\cos x+3\sqrt{3}\cos 2x$
$g(x)=3\sqrt{3}\cos 2x+3\sin 2x$
$a=3\sqrt{3}$, $b=3$ dan $c=0$
$\begin{align}g_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{(3\sqrt{3})^2+3^2}+0 \\ g_{\min} &= -6 \end{align}$
Jawaban: A
Soal No. 30
Jika nilai maksimum $y=3\cos (px+20^\circ)+2p$ sama dengan empat kali nilai minimumnya, maka $y$ akan minimum untuk $x$ = ….A. $65^\circ$
B. $102^\circ$
C. $208^\circ$
D. $272^\circ$
E. $300^\circ$
Penyelesaian: Lihat/Tutup
$y=3\cos (px+20^\circ)+2p$$a=3$ dan $c=2p$ maka:
$y_{\max}=\left| a \right|+c=3+2p$
$y_{\min}=-\left| a \right|+c=-3+2p$
$\begin{align}y_{\max} &= 4y_{\min} \\ 3+2p &= 4(-3+2p) \\ 3+2p &= -12+8p \\ -6p &= -15 \\ p &= \frac{-15}{-6} \\ p &= \frac{5}{2} \end{align}$
Nilai $y_{\min}$ maka:
$\begin{align}\cos (px+20^\circ) &= -1 \\ \cos \left( \frac{5}{2}x+20^\circ \right) &= \cos 180^\circ \\ \frac{5}{2}x+20^\circ &= 180^\circ+k.360^\circ \\ \frac{5}{2}x &= 160^\circ+k.360^\circ \\ x &= 64^\circ+k.144^\circ \end{align}$
$k=0\to x=64^\circ$
$k=1\to x=208^\circ$
Jawaban: C
Soal No. 31
Fungsi $y=\cos x\cos \left( x-\frac{\pi }{3} \right)+\frac{3}{4}$ mencapai nilai ….A. maksimum 3 dan minimum 1
B. maksimum $\frac{3}{2}$ dan minimum $\frac{1}{2}$
C. maksimum 1 dan minimum 0
D. maksimum $\frac{9}{4}$ dan minimum $\frac{1}{4}$
E. maksimum $\frac{5}{4}$ dan minimum $\frac{3}{4}$
Penyelesaian: Lihat/Tutup
Ingat, $\cos \alpha \cos \beta =\frac{1}{2}\left[ \cos (\alpha +\beta )+\cos (\alpha -\beta ) \right]$ maka:$\begin{align}y &= \cos x\cos \left( x-\frac{\pi }{3} \right)+\frac{3}{4} \\ &= \frac{1}{2}\left[ \cos \left( 2x-\frac{\pi }{3} \right)+\cos \frac{\pi }{3} \right]+\frac{3}{4} \\ &= \frac{1}{2}\left[ \cos \left( 2x-\frac{\pi }{3} \right)+\frac{1}{2} \right]+\frac{3}{4} \\ &= \frac{1}{2}\cos \left( 2x-\frac{\pi }{3} \right)+\frac{1}{4}+\frac{3}{4} \\ y &= \frac{1}{2}\cos \left( 2x-\frac{\pi }{3} \right)+1 \end{align}$
$a=\frac{1}{2}$ dan $c=1$ maka:
$y_{\max}=\left| a \right|+c=\left| \frac{1}{2} \right|+1=\frac{3}{2}$
$y_{\min}=-\left| a \right|+c=-\left| \frac{1}{2} \right|+1=\frac{1}{2}$
Jawaban: B
Soal No. 32
Dua lebih dari nilai maksimum $y=2\cos px-2\sqrt{3}\sin px+2p-1$ sama dengan tiga kali nilai minimumnya, maka $y$ akan minimum untuk $x$ = ….A. $17^\circ$
B. $112^\circ$
C. $193^\circ$
D. $246^\circ$
E. $305^\circ$
Penyelesaian: Lihat/Tutup
$y=2\cos px-2\sqrt{3}\sin px+2p-1$$a=2$, $b=-2\sqrt{3}$ dan $c=2p-1$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{2^2+(-2\sqrt{3})^2}+2p-1 \\ y_{\max} &= 2p+3 \end{align}$
$\begin{align}y_{\min} &= -\sqrt{a^2+b^2}+c \\ &= -\sqrt{2^2+(-2\sqrt{3})^2}+2p-1 \\ y_{\min} &= 2p-5 \end{align}$
$\begin{align}2+y_{\max} &= 3y_{\min} \\ 2+2p+3 &= 3(2p-5) \\ 2p+5 &= 6p-15 \\ -4p &= -20 \\ p &= 5 \end{align}$
$y=2\cos px-2\sqrt{3}\sin px+2p-1$
$y=2\cos 5x-2\sqrt{3}\sin 5x+9$
$a=2$ dan $b=-2\sqrt{3}$ maka:
$\theta $ dan titik $(a,b)=(2,-2\sqrt{3})$ di kuadran IV
$\begin{align}\theta &= {\tan}^{-1}\left( \frac{b}{a} \right) \\ &= {\tan}^{-1}\left( \frac{-2\sqrt{3}}{2} \right) \\ &= {\tan}^{-1}\left( -\sqrt{3} \right) \\ \theta &= 330^\circ \end{align}$
$\begin{align}k &= \sqrt{a^2+b^2} \\ &= \sqrt{2^2+(-2\sqrt{3})^2} \\ k &= 4 \end{align}$
$\begin{align}y &= 2\cos 5x-2\sqrt{3}\sin 5x+9 \\ &= k\cos (5x-\theta )+9 \\ y &= 4\cos (5x-330^\circ)+9 \end{align}$
Nilai $y$ minimum jika:
$\begin{align}\cos (5x-330^\circ) &= -1 \\ \cos (5x-330^\circ) &= \cos 180^\circ \\ 5x-330^\circ &= 180^\circ+k.360^\circ \\ 5x &= 510^\circ+k.360^\circ \\ x &= 102^\circ+k.72^\circ \end{align}$
$k=-1\to x=30^\circ$
$k=0\to x=102^\circ$
$k=1\to x=174^\circ$
$k=2\to x=246^\circ$
$k=3\to x=318^\circ$
Jadi, $y$ akan minimum untuk $x=246^\circ$.
Jawaban: D
Soal No. 33
Perhatikan gambar!Keliling $\Delta ABC$ adalah 8 cm, panjang sisi AC terkecil yang memungkinkan adalah ….
A. $\frac{8}{2-\sqrt{2}}$
B. $8(\sqrt{2}-1)$
C. $\frac{8}{2+\sqrt{2}}$
D. $8(\sqrt{2}+1)$
E. 4
Penyelesaian: Lihat/Tutup
$\sin \alpha =\frac{BC}{AC}\Leftrightarrow BC=AC\sin \alpha $$\cos \alpha =\frac{AB}{AC}\Leftrightarrow AB=AC\cos \alpha $
$\begin{align}\text{Keliling }\Delta ABC &= 8 \\ AC+AB+BC &= 8 \\ AC+AC\cos \alpha +AC\sin \alpha &= 8 \\ AC(1+\cos \alpha +\sin \alpha ) &= 8 \\ \end{align}$
$AC=\frac{8}{\cos \alpha +\sin \alpha +1}$
$\begin{align}AC_{\min} &= \frac{8}{(\cos \alpha +\sin \alpha +1)_{\max}} \\ &= \frac{8}{\sqrt{1^2+1^2}+1} \\ &= \frac{8}{\sqrt{2}+1}\times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\ AC_{\min} &= 8(\sqrt{2}-1) \end{align}$
Jawaban: B
Soal No. 34
Nilai minimum dan maksimum $(p-1)\sin x+(2p-3)\cos x+3q+3$ secara berturut-turut adalah 2 dan 7. Jika $p_1$ dan $p_2$ penyelesaian $p$ dari masalah ini, maka $q+p_1+p_2$ = ….A. 0,5
B. 2,3
C. 2,8
D. 3,1
E. 3,3
Penyelesaian: Lihat/Tutup
$(p-1)\sin x+(2p-3)\cos x+3q+3$$a=p-1$, $b=2p-3$ dan $c=3q+3$ maka:
$\frac{\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ y_{\min} &= -\sqrt{a^2+b^2}+c \end{align}}{\begin{align}y_{\max}+y_{\min} &= 2c \\ 2+7 &= 2(3q+3) \\ 9 &= 6q+6 \\ 6q &= 3 \\ q &= \frac{1}{2} \end{align}}+$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ 7 &= \sqrt{(p-1)^2+(2p-3)^2}+3q+3 \\ 7 &= \sqrt{5p^2-14p+10}+3.\frac{1}{2}+3 \\ 7 &= \sqrt{5p^2-14p+10}+\frac{9}{2} \\ \frac{5}{2} &= \sqrt{5p^2-14p+10} \\ \frac{25}{4} &= 5p^2-14p+10 \\ 25 &= 20p^2-56p+40 \\ 0 &= 20p^2-56p+15 \end{align}$
$p_1+p_2=-\frac{-56}{20}=2,8$
$q+p_1+p_2=0,5+2,8=3,3$
Jawaban: E
Soal No. 35
Jika $A+B$ di kuadran I, $\cos (A+B)=\frac{3}{5}$ dan $y=\cos A+\sin B$, maka $y_{\max}$ = ….A. $\frac{1}{5}\sqrt{58}$
B. $\frac{3}{5}\sqrt{10}$
C. $\frac{1}{5}\sqrt{41}$
D. $\frac{4}{5}\sqrt{2}$
E. $\frac{4}{5}\sqrt{3}$
Penyelesaian: Lihat/Tutup
Misal:$\alpha =A+B$ maka:
$\cos (A+B)=\frac{3}{5}\Leftrightarrow \cos \alpha =\frac{3}{5}=\frac{sa}{mi}$
$\begin{align}\sin \alpha &= \frac{de}{mi} \\ &= \frac{\sqrt{mi^2-de^2}}{mi} \\ &= \frac{\sqrt{5^2-3^2}}{5} \\ \sin \alpha &= \frac{4}{5} \end{align}$
$\begin{align}B &= \alpha -A \\ \sin B &= \sin (\alpha -A) \\ &= \sin \alpha \cos A-\cos \alpha \sin A \\ \sin B &= \frac{4}{5}\cos A-\frac{3}{5}\sin A \end{align}$
$\begin{align}y &= \cos A+\sin B \\ &= \cos A+\frac{4}{5}\cos A-\frac{3}{5}\sin A \\ y &= \frac{9}{5}\cos A-\frac{3}{5}\sin A \end{align}$
$a=\frac{9}{5}$, $b=-\frac{3}{5}$ dan $c=0$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{\left( \frac{9}{5} \right)^2+\left( -\frac{3}{5} \right)^2}+0 \\ &= \sqrt{\frac{81}{25}+\frac{9}{25}} \\ &= \sqrt{\frac{90}{25}} \\ y_{\max} &= \frac{3\sqrt{10}}{5} \end{align}$
Jawaban: B
Soal No. 36
Nilai maksimum dari $3\cos x-\sqrt{3}\sin x-\frac{1}{2}\sqrt{3}$ adalah ….A. $\frac{5}{2}\sqrt{3}$
B. $2\sqrt{3}$
C. $\frac{3}{2}\sqrt{3}$
D. $\sqrt{\frac{3}{2}}$
E. $-5\sqrt{\frac{3}{2}}$
Penyelesaian: Lihat/Tutup
$y=3\cos x-\sqrt{3}\sin x-\frac{1}{2}\sqrt{3}$$a=3$, $b=-\sqrt{3}$ dan $c=-\frac{1}{2}\sqrt{3}$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{3^2+(-\sqrt{3})^2}-\frac{1}{2}\sqrt{3} \\ &= 2\sqrt{3}-\frac{1}{2}\sqrt{3} \\ y_{\max} &= \frac{3}{2}\sqrt{3} \end{align}$
Jawaban: C
Soal No. 37
Nilai maksimum $f(x)=3\cos x+4\sin x-2$ adalah ….A. 0
B. 3
C. 6
D. 9
E. 10
Penyelesaian: Lihat/Tutup
$f(x)=3\cos x+4\sin x-2$$a=3$, $b=4$ dan $c=-2$ maka:
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{3^2+4^2}-2 \\ y_{\max} &= 3 \end{align}$
Jawaban: B
Soal No. 38
$y=\sqrt{3}\sin 3x-\sqrt{13}\cos 3x+8$ mempunyai nilai maksimum ….A. 12
B. 14
C. $8+\sqrt{3}$
D. $8-\sqrt{3}$
E. $\frac{1}{2}\sqrt{20}$
Penyelesaian: Lihat/Tutup
$y=\sqrt{3}\sin 3x-\sqrt{13}\cos 3x+8$$y=-\sqrt{13}\cos 3x+\sqrt{3}\sin 3x+8$
$a=-\sqrt{13}$ dan $b=\sqrt{3}$ dan $c=8$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-\sqrt{13})^2+(\sqrt{3})^2}+8 \\ y_{\max} &= 12 \end{align}$
Jawaban: A
Soal No. 39
Fungsi $y=-\sqrt{3}\cos x+\sin x+4$ mempunyai nilai …A. minimum = $-2$ untuk $x=330^\circ$
B. maksimum = 2 untuk $x=150^\circ$
C. minimum = 2 untuk $x=150^\circ$
D. maksimum = 6 untuk $x=330^\circ$
E. maksimum = 6 untuk $x=150^\circ$
Penyelesaian: Lihat/Tutup
$y=-\sqrt{3}\cos x+\sin x+4$$a=-\sqrt{3}$, $b=1$ dan $c=4$
$\theta $ dan titik $(a,b)=(-\sqrt{3},1)$ di kuadran II.
$\begin{align}\theta &= {\tan}^{-1}\left( \frac{b}{a} \right) \\ &= {\tan}^{-1}\left( \frac{1}{-\sqrt{3}} \right) \\ &= {\tan}^{-1}\left( -\frac{1}{3}\sqrt{3} \right) \\ \theta &= 150^\circ \end{align}$
$\begin{align}y_{\max} &= \sqrt{a^2+b^2}+c \\ &= \sqrt{(-\sqrt{3})^2+1^2}+4 \\ y_{\max} &= 6 \end{align}$
Nilai $y_{\max}$ untuk:
$\begin{align}\cos (x-\theta) &= 1 \\ \cos (x-150^\circ) &= \cos 0^\circ \\ x-150^\circ &= k.360^\circ \\ x &= 150^\circ+k.360^\circ \end{align}$
$k=0\to x=150^\circ$
$\begin{align}y_{\min} &= \sqrt{a^2+b^2}+c \\ &= -\sqrt{(-\sqrt{3})^2+1^2}+4 \\ y_{\min} &= 2 \end{align}$
Nilai $y_{\min}$ untuk:
$\begin{align}\cos (x-\theta ) &= -1 \\ \cos (x-150^\circ) &= \cos 180^\circ \\ x-150^\circ &= 180^\circ+k.360^\circ \\ x &= 330^\circ+k.360^\circ \end{align}$
$k=0\to x=330^\circ$
Jadi, $y_{\min}=2$ untuk $x=330^\circ$ dan $y_{\max}=6$ untuk $x=150^\circ$.
Jawaban: E
Semoga postingan: Soal Nilai Maksimum dan Minimum Fungsi Trigonometri dan Pembahasan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Post a Comment for "Soal Nilai Maksimum dan Minimum Fungsi Trigonometri dan Pembahasan"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.