Skip to content Skip to sidebar Skip to footer

Soal dan Pembahasan Bilangan Kompleks 2. Operasi Aljabar dan Invers Bilangan Kompleks

Soal dan Pembahasan Bilangan Kompleks
Pada postingan ini Catatan Matematika berbagi:
  1. Soal Operasi Aljabar Bilangan Kompleks dan Pembahasannya
  2. Soal Invers Bilangan Kompleks dan Pembahasannya
Soal No. 1
Jika $z_1=2-5i$ dan $z_2=3+4i$ maka nilai dari $3z_1+2z_2$ = …. A. $12-7i$
B. $12+7i$
C. $7+12i$
D. $7-12i$
E. $19i$
Penyelesaian: Lihat/Tutup $\begin{align}3z_1+2z_2 &= 3(2-5i)+2(3+4i) \\ &= 6-15i+6+8i \\ &= 12-7i \end{align}$
Jawaban: A
Soal No. 2
Jika $z_1=2+\sqrt{3}i$ dan $z_2=3-\frac{1}{\sqrt{3}}i$ maka nilai dari $3z_1-2z_2$ = ….
A. $12-\frac{11}{3}\sqrt{3}i$
B. $12+\frac{11}{3}\sqrt{3}i$
C. $-\frac{11}{3}\sqrt{3}i$
D. $\frac{11}{3}\sqrt{3}i$
E. 12
Penyelesaian: Lihat/Tutup $\begin{align}3z_1-2z_2 &= 3(2+\sqrt{3}i)-2\left( 3-\frac{1}{\sqrt{3}}i \right) \\ &= 6+3\sqrt{3}i-6+\frac{2}{\sqrt{3}}i \\ &= \frac{3\sqrt{3}i}{1}+\frac{2i}{\sqrt{3}} \\ &= \frac{9i+2i}{\sqrt{3}} \\ &= \frac{11i}{\sqrt{3}} \\ &= \frac{11}{3}\sqrt{3}i \end{align}$
Jawaban: D
Soal No. 3
Jika $z_1=3+2i$ dan $z_2=3-2i$ maka $z_1^2-z_2^2$ = ….
A. 5
B. 10
C. $12i$
D. $24i$
E. $10+24i$
Penyelesaian: Lihat/Tutup $\begin{align}z_1^2-z_2^2 &= (z_1+z_2)(z_1-z_2) \\ &= (3+2i+3-2i)(3+2i-3+2i) \\ &= 6(4i) \\ &= 24i \end{align}$
Jawaban: D
Soal No. 4
Jika $z_1=2-i$ dan $z_2=-3+i$ maka $z_1^3+z_2^3$ = ….
A. $-16-15i$
B. $-16+15i$
C. $16-15i$
D. $16+15i$
E. $25i$
Penyelesaian: Lihat/Tutup $\begin{align}z_1^3 &= (2-i)^3 \\ &= (2-i)^2(2-i) \\ &= (4-4i+i^2)(2-i) \\ &= (4-4i-1)(2-i) \\ &= (3-4i)(2-i) \\ &= 6-3i-8i+4i^2 \\ &= 6-11i+4(-1) \\ z_1^3 &= 2-11i \end{align}$
$\begin{align}z_2^3 &= (-3+i)^3 \\ &= (-3+i)^2(-3+i) \\ &= (9-6i+i^2)(-3+i) \\ &= (9-6i-1)(-3+i) \\ &= (8-6i)(-3+i) \\ &= -24+8i+18i-6i^2 \\ &= -24+26i-6(-1) \\ z_1^3 &= -18+26i \end{align}$
$\begin{align}z_1^3+z_2^3 &= 2-11i+(-18+26i) \\ &= -16+15i \end{align}$
Jawaban: B
Soal No. 5
Jika bilangan kompleks $z_1=(1,1)$ dan $z_1.z_2=1$ maka $z_2$ = ….
A. $\left( -\frac{1}{2},-\frac{1}{2} \right)$
B. $\left( -\frac{1}{2},\frac{1}{2} \right)$
C. $\left( \frac{1}{2},-\frac{1}{2} \right)$
D. $\left( \frac{1}{2},\frac{1}{2} \right)$
E. $(-1,-1)$
Penyelesaian: Lihat/Tutup $z_1.z_2=1$ maka:
$\begin{align}z_2 &= z_1^{-1} \\ &= \frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}i \\ &= \frac{1}{1^2+1^2}-\frac{1}{1^2+1^2}i \\ &= \frac{1}{2}-\frac{1}{2}i \\ z_2 &= \left( \frac{1}{2},-\frac{1}{2} \right) \end{align}$
Jawaban: C
Soal No. 6
Bagian real dan bagian imaginer bilangan kompleks $\frac{3+2i}{1+i}$ berturut-turut adalah ….
A. $-\frac{5}{2}$ dan $-\frac{1}{2}$
B. $\frac{5}{2}$ dan $-\frac{1}{2}$
C. $-\frac{5}{2}$ dan $\frac{1}{2}$
D. $\frac{5}{2}$ dan $\frac{1}{2}$
E. 5 dan 1
Penyelesaian: Lihat/Tutup $\begin{align}z &= \frac{3+2i}{1+i}\times \frac{1-i}{1-i} \\ &= \frac{3-3i+2i-2i^2}{1-i+i-i^2} \\ &= \frac{3-i-2(-1)}{1-(-1)} \\ &= \frac{5-i}{2} \\ z &= \frac{5}{2}-\frac{1}{2}i \end{align}$
$\operatorname{Re}(z)=\frac{5}{2}$ dan $\operatorname{Im}(z)=-\frac{1}{2}$
Jawaban: B
Soal No. 7
Invers dari bilangan kompleks $\frac{3}{i}$ adalah ….
A. $-\frac{2}{3}i$
B. $-\frac{1}{3}i$
C. 1
D. $\frac{1}{3}i$
E. $\frac{2}{3}i$
Penyelesaian: Lihat/Tutup $\begin{align}z &= \frac{3}{i} \\ &= \frac{3}{i}\times \frac{i}{i} \\ &= \frac{3i}{i^2} \\ &= \frac{3i}{-1} \\ z &= -3i \\ z &= (0,-3) \end{align}$
$\begin{align}z^{-1} &= \frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}i \\ &= \frac{0}{{{0}^{2}}+{{(-3)}^{2}}}-\frac{-3}{{{0}^{2}}+{{(-3)}^{2}}}i \\ &= 0+\frac{3}{9}i \\ z^{-1} &= \frac{1}{3}i \end{align}$
Jawaban: D
Soal No. 8
Bilangan real $x$ dan $y$ berturut-turut yang memenuhi $(2+3i)x+(2-3i)y=2-i$ adalah ….
A. $\frac{1}{4}$ dan $\frac{3}{4}$
B. $\frac{1}{3}$ dan $\frac{2}{3}$
C. $\frac{1}{2}$ dan $\frac{1}{2}$
D. $-\frac{1}{4}$ dan $\frac{5}{4}$
E. $-\frac{1}{3}$ dan $\frac{4}{3}$
Penyelesaian: Lihat/Tutup $\begin{align}(2+3i)x+(2-3i)y &= 2-i \\ 2x+3xi+2y-3yi &= 2-i \\ (2x+2y)+(3x-3y)i &= 2-i \end{align}$
$\begin{align}2x+2y &= 2 \\ x+y &= 1 \\ x &= 1-y \end{align}$
$\begin{align}3x-3y &= -1 \\ 3(1-y)-3y &= -1 \\ 3-3y-3y &= -1 \\ -6y &= -4 \\ y &= \frac{-4}{-6} \\ y &= \frac{2}{3} \end{align}$
$\begin{align}x &= 1-y \\ &= 1-\frac{2}{3} \\ x &= \frac{1}{3} \end{align}$
Jadi, bilangan real $x$ dan $y$ yang memenuhi adalah $\frac{1}{3}$ dan $\frac{2}{3}$.
Jawaban: B
Soal No. 9
Jika bilangan real $x$ dan $y$ memenuhi $\frac{x-2}{2+i}+\frac{y-2}{2-i}=4$ maka $(x+yi)^2+(x-yi)^2$ = ….
A. -81
B. -80
C. 0
D. 80
E. 81
Penyelesaian: Lihat/Tutup $\begin{align}\frac{x-2}{2+i}+\frac{y-2}{2-i} &= 4 \\ \frac{x-2}{2+i}\times \frac{2-i}{2-i}+\frac{y-2}{2-i}\times \frac{2+i}{2+i} &= 4 \\ \frac{2x-xi-4+2i}{4-2i+2i-i^2}+\frac{2y+yi-4-2i}{4+2i-2i-i^2} &= 4 \\ \frac{2x+2y-8+(y-x)i}{4-(-1)} &= 4 \\ \frac{2x+2y-8+(y-x)i}{5} &= 4 \\ 2x+2y-8+(y-x)i &= 20 \end{align}$
$\begin{align}2x+2y-8 &= 20 \\ 2x+2y &= 28 \\ x+y &= 14 \\ x &= 14-y \end{align}$
$\begin{align}y-x &= 0 \\ y-(14-y) &= 0 \\ y-14+y &= 0 \\ 2y &= 14 \\ y &= 7 \end{align}$
$\begin{align}x &= 14-y \\ &= 14-7 \\ x &= 7 \end{align}$
${{(x+yi)}^{2}}+{{(x-yi)}^{2}}$
= ${{(7+7i)}^{2}}+{{(7-7i)}^{2}}$
= $49+98i+49i^2+49-98i+49i^2$
= $98+98i^2$
= $98+98(-1)$
= 0
Jawaban: C
Soal No. 10
Bilangan kompleks $(1+i)^{2022}$ = ….
A. $-2^{2022}$
B. $-2^{1011}i$
C. $i$
D. $2^{1011}i$
E. $2^{2022}i$
Penyelesaian: Lihat/Tutup $\begin{align}(1+i)^{2022} &= \left( (1+i)^2 \right)^{1011} \\ &= (1+2i+i^2)^{1011} \\ &= (1+2i+-1)^{1011} \\ &= (2i)^{1011} \\ &= 2^{1011}.i^{1011} \\ &= 2^{1011}.i^{1010}.i \\ &= 2^{1011}.(i^2)^{505}.i \\ &= 2^{1011}.(-1)^{505}.i \\ (1+i)^{2022} &= -2^{1011}i \end{align}$
Jawaban: B
Soal No. 11
Misal $z=a+bi$ adalah bilangan kompleks dan $z^2=i$ maka $a^2-b^2$ = ….
A. -2
B. -1
C. 0
D. 1
E. 2
Penyelesaian: Lihat/Tutup $\begin{align}z^2 &= i \\ (a+bi)^2 &= i \\ a^2+2abi+b^2i^2 &= i \\ a^2+2abi+b^2(-1) &= i \\ a^2-b^2+2abi &= 0+i \end{align}$
$a^2-b^2=0$
Jawaban: C
Soal No. 12
Jika $z=-1-i$ maka $z^2+2z+2$ = ….
A. -2
B. -1
C. 0
D. 1
E. 2
Penyelesaian: Lihat/Tutup $z^2+2z+2$
= $(-1-i)^2+2(-1-i)+2$
= $1+2i+i^2-2-2i+2$
= $1+i^2$
= $1-1$
= 0
Jawaban: C
Soal No. 13
Jika bilangan kompleks $z=\sqrt{3}+i$ maka $z^6$ = ….
A. -64
B. -32
C. 0
D. 32
E. 6
Penyelesaian: Lihat/Tutup $z=\sqrt{3}+i$
$\begin{align}z^2 &= \left( \sqrt{3}+i \right)^2 \\ &= 3+2\sqrt{3}i+i^2 \\ z^2 &= 2+2\sqrt{3}i \end{align}$
$\begin{align}z^4 &= \left( z^2 \right)^2 \\ &= \left( 2+2\sqrt{3}i \right)^2 \\ &= 4+8\sqrt{3}i+12i^2 \\ z^4 &= -8+8\sqrt{3}i \end{align}$
$\begin{align}z^6 &= z^2.z^4 \\ &= \left( 2+2\sqrt{3}i \right)\left( -8+8\sqrt{3}i \right) \\ &= -16+16\sqrt{3}i-16\sqrt{3}i+48i^2 \\ &= -16+48(-1) \\ z^6 &= -64 \end{align}$
Jawaban: A
Soal No. 14
Persamaan kuadrat yang akar-akarnya $x_1=i$ dan $x_2=\frac{1}{1-i}$ adalah ….
A. $x^2-\frac{1}{2}x-\frac{1}{2}=0$
B. $x^2-\frac{3}{2}ix+\frac{1}{2}i=0$
C. $x^2-\frac{1}{2}x+\frac{1}{2}i+\frac{1}{2}=0$
D. $x^2-\left( \frac{1}{2}+\frac{3}{2}i \right)x+\frac{1}{2}i+\frac{1}{2}=0$
E. $x^2-\left( \frac{1}{2}+\frac{3}{2}i \right)x+\frac{1}{2}i-\frac{1}{2}=0$
Penyelesaian: Lihat/Tutup $x_1=i$
$\begin{align}x_2 &= \frac{1}{1-i}\times \frac{1+i}{1+i} \\ &= \frac{1+i}{1-i^2} \\ &= \frac{1+i}{1-(-1)} \\ &= \frac{1+i}{2} \\ x_2 &= \frac{1}{2}+\frac{1}{2}i \end{align}$
$x_1+x_2=i+\frac{1}{2}+\frac{1}{2}i=\frac{1}{2}+\frac{3}{2}i$
$\begin{align}x_1\times x_2 &= i\left( \frac{1}{2}+\frac{1}{2}i \right) \\ &= \frac{1}{2}i+\frac{1}{2}i^2 \\ &= \frac{1}{2}i+\frac{1}{2}(-1) \\ x_1\times x_2 &= \frac{1}{2}i-\frac{1}{2} \end{align}$
Persamaan kuadrat yang akar-akarnya $x_1$ dan $x_2$ adalah:
$\begin{align}x^2-(x_1+x_2)x+x_1x_2 &= 0 \\ x^2-\left( \frac{1}{2}+\frac{3}{2}i \right)x+\frac{1}{2}i-\frac{1}{2} &= 0 \end{align}$
Jawaban: E
Soal No. 15
Jika bilangan kompleks $z_1=4-3i$, $z_2=2-2i$, $z_3=3+i$ dan $z_4=-3+2i$ maka $4\frac{z_1}{z_2}+5\frac{z_2}{z_3}+13\frac{z_3}{z_4}+25\frac{z_4}{z_1}$ = ….
A. $-2-13i$
B. $-2+13i$
C. $2-13i$
D. $2+13i$
E. $13+2i$
Penyelesaian: Lihat/Tutup $\begin{align}\frac{z_1}{z_2} &= \frac{4-3i}{2-2i}\times \frac{2+2i}{2+2i} \\ &= \frac{8+8i-6i-6i^2}{4+4i-4i-4i^2} \\ &= \frac{8+2i-6(-1)}{4-4(-1)} \\ \frac{z_1}{z_2} &= \frac{14+2i}{8} \end{align}$
$\begin{align}\frac{z_2}{z_3} &= \frac{2-2i}{3+i}\times \frac{3-i}{3-i} \\ &= \frac{6-2i-6i+2i^2}{9-3i+3i-i^2} \\ &= \frac{6-8i+2(-1)}{9-(-1)} \\ \frac{z_2}{z_3} &= \frac{4-8i}{10} \end{align}$
$\begin{align}\frac{z_3}{z_4} &= \frac{3+i}{-3+2i}\times \frac{-3-2i}{-3-2i} \\ &= \frac{-9-6i-3i-2i^2}{9+6i-6i-4i^2} \\ &= \frac{-9-9i-2(-1)}{9-4(-1)} \\ \frac{z_3}{z_4} &= \frac{-7-9i}{13} \end{align}$
$\begin{align}\frac{z_4}{z_1} &= \frac{-3+2i}{4-3i}\times \frac{4+3i}{4+3i} \\ &= \frac{-12-9i+8i+6i^2}{16+12i-12i-9i^2} \\ &= \frac{-12-i+6(-1)}{16-9(-1)} \\ \frac{z_4}{z_1} &= \frac{-18-i}{25} \end{align}$
$4\frac{z_1}{z_2}+5\frac{z_2}{z_3}+13\frac{z_3}{z_4}+25\frac{z_4}{z_1}$
= $4.\frac{14+2i}{8}$ + $5.\frac{4-8i}{10}$ + $13.\frac{-7-9i}{13}$ + $25.\frac{-18-i}{25}$
= $\frac{14+2i}{2}$ + $\frac{4-8i}{2}$ + $-7-9i$ + $-18-i$
= $7+i$ + $2-4i$ + $-7-9i$ + $-18-i$
= $-16-13i$
Jawaban: A
Soal No. 16
Dua bilangan kompleks $5+2i$ dan $3+4i$ bila dikalikan hasilnya adalah …
A. $2+23i$
B. $5+26i$
C. $7+23i$
D. $7+26i$
E. $23+26i$
Penyelesaian: Lihat/Tutup $\begin{align}(5+2i)(3+4i) &= 15+20i+6i+8i^2 \\ &= 15+26i+8(-1) \\ &= 7+26i \end{align}$
Jawaban: D
Soal No. 17
Ditentukan $(2+3i)z=2+i$. Jika $z$ bilangan kompleks, nilai $z$ = …
A. $\frac{1}{13}(7-4i)$
B. $\frac{1}{5}(7-4i)$
C. $\frac{1}{5}(7+4i)$
D. $\frac{1}{13}(7+4i)$
E. $\frac{1}{13}(1-4i)$
Penyelesaian: Lihat/Tutup $\begin{align}(2+3i)z &= 2+i \\ z &= \frac{2+i}{2+3i}\times \frac{2-3i}{2-3i} \\ &= \frac{4-6i+2i-3i^2}{4-6i+6i-9i^2} \\ &= \frac{4-4i-3(-1)}{4-9(-1)} \\ z &= \frac{7-4i}{13} \\ z &= \frac{1}{13}(7+4i) \\ \end{align}$
Jawaban: D
Soal No. 18
Ditentukan $z_1=2+3i$ dan $z_2=1-3i$, maka bagian imajiner dari $\frac{z_1}{z_2}$ adalah …
A. $-\frac{9}{10}$
B. $-\frac{3}{8}$
C. $\frac{9}{10}$
D. $\frac{11}{10}$
E. $\frac{9}{8}$
Penyelesaian: Lihat/Tutup $\begin{align}\frac{z_1}{z_2} &= \frac{2+3i}{1-3i} \\ &= \frac{2+3i}{1-3i}\times \frac{1+3i}{1+3i} \\ &= \frac{2+6i+3i+9i^2}{1+3i-3i-9i^2} \\ &= \frac{2+9i+9(-1)}{1-9(-1)} \\ &= \frac{-7+9i}{10} \\ \frac{z_1}{z_2} &= -\frac{7}{10}+\frac{9}{10}i \end{align}$
$\operatorname{Im}\left( \frac{z_1}{z_2} \right)=\frac{9}{10}$
Jawaban: C
Soal No. 19
Diketahui $z_1=2-\sqrt{2}i$ dan $z_2=4+4\sqrt{2}i$. Tentukan $z_1+z_2$.
A. $6+3\sqrt{2}i$
B. $4+\sqrt{2}i$
C. $6+4\sqrt{2}i$
D. $4-\sqrt{2}i$
E. $6-3\sqrt{2}i$
Penyelesaian: Lihat/Tutup $\begin{align}z_1+z_2 &= 2-\sqrt{2}i+4+4\sqrt{2}i \\ &= 6+3\sqrt{2}i \end{align}$
Jawaban: A
Soal No. 20
Tentukan invers terhadap perkalian $z=1+2i$
A. $-\frac{1}{5}-\frac{2}{5}i$
B. $-\frac{1}{5}-\frac{3}{5}i$
C. $\frac{1}{5}+\frac{3}{5}i$
D. $\frac{1}{5}-\frac{2}{5}i$
E. $-\frac{1}{5}+\frac{2}{5}i$
Penyelesaian: Lihat/Tutup $z=1+2i=(1,2)$ diperoleh $x=1$ dan $y=2$
$\begin{align}z^{-1} &= \frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}i \\ &= \frac{1}{1^2+2^2}-\frac{2}{1^2+2^2}i \\ z^{-1} &= \frac{1}{5}-\frac{2}{5}i \end{align}$
Jawaban: D

Semoga postingan: Soal dan Pembahasan Bilangan Kompleks 2. Operasi Aljabar dan Invers Bilangan Kompleks ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

Post a Comment for "Soal dan Pembahasan Bilangan Kompleks 2. Operasi Aljabar dan Invers Bilangan Kompleks"